
i810 with XFree86 4.x HOWTO

Toby Russell

v0.55, January 2001

This HOWTO describes getting XFree86 4.x running on Intel's i810 graphics chipset by using special
features of the 2.2.18 and 2.4.0 kernels.

Table of Contents

1. Introduction...1

2. Down to business...2
2.1. Getting and installing X4.x...2
2.2. Get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff)...3
2.3. Nimbly tweak XF86Config..6

3. Thank you..9

i810 with XFree86 4.x HOWTO

i

1. Introduction
This document has a very specific purpose; to help people who are failing to get X working on Intel's i810
graphics chipset (hereafter "the i810"). It is written by a beginner (me), and it is imagined that it will be of
use primarily to other beginners. The author would be flattered to hear that he has helped anyone more skilled
than he. Furthermore, I know that the i810 works with XFree86 3.3.6, but I personally have not trod that path.
My experience comes purely from XFree86 4.0 (hereafter "X4.x") and the i810/agpgart support available in
the 2.2.18 and 2.4.0 kernels, and consequently this HOWTO tackles that solution, or procedure, alone. The
instructions that follow were written to the 2.2.18 compile tune, but the procedure is similar enough to be
translatable to the 2.4.0 (if you feel safe with this beast (see below)). Use your head, as Tony Buzan would
say.

Even though I know this procedure works I feel obliged to point out that what I have recorded here is mostly
that which I have worked out in my own bumbling way. It may well be that others know a quicker and more
efficient method than that which follows. If so I will be happy to hear from them. As I mentioned previously,
the i810 will work with XFree86 3.3.6, if one uses also some drivers designed by Intel for the task (namely
XFCom_i810−1.2−3 and I810Gtt−0.2−4) but, in the interests of Linux purity, and of course knowing one
does not have to use Intel's software, I recommend the method detailed here. It does not need Intel drivers.

Finally, no introduction would be complete without the following words of caution; I feel this HOWTO
should be regarded as a 'bare bones' set of instructions and should therefore be followed with all relevant
README literature to hand. What follows is not exhaustive by any stretch of the imagination, and needs, at
least for beginners, said README stuff.

1. Introduction 1

2. Down to business
Note: Do everything that follows logged on as root.

There are three distinct stages that need not be followed in the order listed here (please feel free to use your
imagination). Said stages are;

• get and install X4.x
• get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff)
• nimbly tweak XF86Config

2.1. Getting and installing X4.x

The first stage is of course listed only as a guide for those who have perhaps tried getting XFree86 3.3.6
working with the i810 and failed, or perhaps those who have not even heard that X4.x supports the i810 and
have been struggling vainly with their XF86Config file. I suppose the majority of people who find these
instructions useful will have already loaded X4.x. You lot can skip this bit. Anyway, if you do need to know,
X4.x can be got from; ftp://ftp.xfree86.org/pub/XFree86/4.0/binaries

But before you rush ahead and download away you must first be sure which version of X4.x suits your
system. So download Xinstall.sh on its own and run (from within the folder containing
Xinstall.sh):

sh Xinstall.sh −check

The results will direct you to the correct folder within the above mentioned URL from where the appropriate
files for your system can be downloaded.

For a basic installation and to save time downloading one needs only the following absolute necessities,
without exception (the others are optional and when included in the install process, I feel, increase the
chances of things going wrong for the unwary and inexperienced):

extract[.exe] Xdoc.tgz Xvar.tgz

Xbin.tgz Xfenc.tgz Xxserv.tgz

Xlib.tgz Xfnts.tgz Xmod.tgz

Xman.tgz Xetc.tgz

Now knowing which set of files are suited to your system you can go ahead and download whichever suits.
Then install with the following command (from within the folder containing freshly downloaded files):

sh Xinstall.sh

If you have been good everything will proceed smoothly. You will be asked some questions which the
README file can explain/answer better than I. If something doesn't work as expected I refer you to the far
more detailed, aforementioned README file, which you should definitely peruse. As a newbie I always read
the readme files before downloading, installing, compiling and even getting up from my seat to go to the
toilette. You can never be too sure.

2. Down to business 2

ftp://ftp.xfree86.org/pub/XFree86/4.0/binaries

That is the end of this stage.

2.2. Get and compile kernel 2.2.18 or 2.4.0 (including
mknod agpgart stuff)

You can get either kernel from ftp://ftp.kernel.com. Of course, read everything called README while you
are at it. When I first fixed this i810 problem I used a test kernel (2.4.0−test1) which worked fine for me.
Since the official 2.4.0 has come out I have tried to compile it on both Red Hat and Debian, but without
success. At the moment my suspiscion is that there are errors in the Makefile (any help with this would be
greatly appreciated!) which seem to be producing a bad bzImage. Anyway, at reboot the new kernel hangs
before it even gets going. For this reason I suggest you use either 2.2.18, or if you are the daring kind,
2.4.0−test1. I know both of them work. If you have had no problems with the 2.4.0 kernel proper, please let
me know.

For each of the kernel updates/compiles I have done, I have always chucked the kernel source file in my
home directory, then run the following sequence, which I learned from a linuxnewbie article (to which you
should refer if my directions are not clear enough for you). It can be found at the following address;
http://www.linuxnewbie.org/nfh/intel/compiling/kernel_update.html. Of course, the location of the
still−packed kernel is not really relevant, it only matters that it is unpacked in a conventional place. I
personally use my home directory for no stronger reason than it seems neat and is easy to remember. OK,
now for the commands:

cd /usr/src

ls −l

Revealed should be, amongst other things, a symbolic link from linux to your existing kernel sources
directory. Remove it as follows:

rm linux

Tip: If there is no symbolic link named linux it's no big deal; not all distributions follow
this method. In that case there may or may not be a folder named after the kernel running on
your system (this depends on whether the kernel sources were included during installation),
in which case there is no need to remove any symbolic link!

Then open the sources file

tar −xzvf /home/[whatever]/linux−2.2.18.tar.gz

and watch the screen spew out pages of information about what's happening. When it is finished it will have
created a new linux folder. Rename it as follows:

mv linux linux−2.2.18

then create a new symbolic link as follows:

ln −s linux−2.2.18 linux

i810 with XFree86 4.x HOWTO

2.2. Get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff) 3

ftp://ftp.kernel.com
http://www.linuxnewbie.org/nfh/intel/compiling/kernel_update.html

This is a more important stage than it appears. Some scripts refer to /usr/src/linux and if they do not
find it they will not run. And it is useful to name the kernel source folders themselves by their release number
for two reasons. First for clarity and second because if you are compiling various kernels you will probably
want to keep the ones you know are stable for safety reasons. If you are sure you will only need the 2.2.18
kernel, then you need only store the one source folder and call it simply /usr/src/linux, in which case,
all the stuff I have included here is of no relevence to you. Again, I invite the reader to use his/her
imagination.

OK, so, change to the new directory:

cd linux

and begin the compile process proper...

make config

Or preferably

make menuconfig

There's also make xconfig, but you haven't got X running, or you wouldn't be reading this. So that won't
work. And I'm embarrassed to mention it in such an imperfect fashion but there is also something like make
oldconfig but I can't find any reference to it in my books. In any case I am not addressing it here, though I am
sure the procedure for it is very similar to that which follows for make menuconfig.

Now, I have gone through three text based kernel compiles (make config) and know how long winded they
are. I reommend make menuconfig instead, which requires only that ncurses be loaded (you don't need X)
and you will be taken through the pretty face of kernel recompilation. I loaded ncurses during a custom install
of Red Hat 6.1, but I forget exactly at which stage that option is available. Otherwise ncurses is, I'm sure, on
your distro's CD in rpm format, so if issuing make menuconfig just produces errors, install the ncurses rpm
and try again.

The most relevant stages of the make process for solving our particular problem are:

• to select EXPERIMENTAL early on (by hitting return while the very first option is highlighted and
then selecting the only suboption which is consequently revealed),

• towards the bottom of the base options, to enter "Character Devices" and select (not as "M" but as
"*") "/dev/agpgart (AGP) support" (only available if the above instruction has been followed), and

• select the appropriate sub−option of "/dev/agpgart (AGP) support" (again not as a module "M" but as
a static part of the kernel "*"), namely the "I810/I810 dc100I810e support" part.

(It has been pointed out to me that loading these features as modules would be more logical, since they are
not required until startx is run. I have not tried the 'loadable module way' yet and will ammend this section of
the HOWTO after I have tested it. I recommend the static mode here because I ran this procedure on a test
version of the 2.4.0 kernel and it was suggested to me that loading statically was a safer and stabler way to
go. Now that 2.4.0 is officially out there, perhaps modules will be more sensible. I'll let you know how it
goes. (Thanks to Heron Ordonez for this.))

Note: The above explanation assumes you have run make menuconfig and so a little
thinkology will be required to map it to a situation where make has been issued instead. But
only a little.

i810 with XFree86 4.x HOWTO

2.2. Get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff) 4

When all is over and you feel calm enough, do this;

make dep

make clean (not violently necessary but does no harm)

make bzImage (takes a while, this bit)

make modules

make modules_install

Now have a look at the /boot directory. You will probably see that System.map is a symbolic link to
System.map−[your_kernel_version] and vmlinuz is a symbolic link to
vmlinuz−[your_kernel_version]. This arrangement is true for many distros, but not all. I think
some store vmlinuz in /, while System.map resides in /boot. Whatever the case is, use your brain and
apply these instructions accordingly. So, basically you need to remove the symbolic links like so:

rm System.map

rm vmlinuz

Then new symbolic links need to be created to the
about−to−be−copied−over−while−simultaneously−being−renamed, recently created files. It goes like this
(assuming you have an i386 computer):

cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz−2.2.18

ln −s /boot/vmlinuz−2.2.18 /boot/vmlinuz

cp /usr/src/linux/System.map /boot/System.map−2.2.18

ln −s /boot/System.map−2.2.18 /boot/System.map

Tip: You don't need to use absolute pathnames if you are within /boot. But if you are the
excessively cautious type and do use absolute pathnames, you just have longer names for
your symbolic files.

Now you need to tell lilo about all your masterly work. This is achieved thusly. First edit your
/etc/lilo.conf file as follows, by adding the following type of thing somewhere after the first (generic)
stanza:

image=/boot/vmlinuz−2.2.18

label=[what−ever−you−want−that−is−relevant−easy−to−type−and−remember]

read−only

root=/dev/hda[n]

After editing lilo.conf you must do this:

/sbin/lilo

so that the crisp, shiny, new linux kernel is known by lilo, otherwise (I have experienced this) the new kernel
will not be available for booting. Which would be silly. So after all this take a deep breath and reboot, select
your new kernel and with fingers crossed, watch. It should work. If it does, go and celebrate a little. But don't
let it get to your head because you have yet to mknod the agpgart module, a simple yet essential procedure

i810 with XFree86 4.x HOWTO

2.2. Get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff) 5

done thusly:

cd /dev

mknod agpgart c 10 175

which basically creates the very essential (X won't run without it) driver (character special file) which acts
kinda like a 'go−between' for the i810 and the X server. (Thanks to Heron Ordonez for saving me some
embarrassment here.) Pretty scientic stuff there. Sorry about that.

That is the end of this stage.

2.3. Nimbly tweak XF86Config

I've done a lot of this and it get's mighty tedious when it fails 23 times in a row I CAN TELL YOU, so pay
attention and read very closely the man page (run man XF86Config at the command prompt). First of all I
recommend running the in−no−way−user−friendly xf86config (observe case!) to genertate a base
XF86Config file as the other tools seem to produce XF86Config files which are in my experience
incompatible with X4.x. When you run through the questions xf86config asks and you reach the card section,
there will be nothing for you to choose, so choose that very nothing. You'll be entering the right stuff later,
after the base file has been created. Then, after answering all the questions as well as you can, save the file as
/etc/X11/XF86Config.

So, finally, the all important addition is:

Section "Device"

Identifier "i810"

Driver "i810"

VideoRam "4096"

and it should be inserted in the Graphics Device Section. There should in any case be an existing "Device"
section which you could edit if you prefer. From thereon you should, having defined the i810 for X, enter
"i810" wherever you see a "Device" field. I am including a couple of sections from my XF86Config file as
an example, and hopefully to make a little clearer what I mean:

Section "Device"

Identifier "i810"

Driver "i810"

VideoRam "4096"

Section "Screen"

Identifier "Screen 1"

Device "i810"

Monitor "Highscreen 17inch"

DefaultColorDepth 24

SubSection "Display"

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 6

Depth 8

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 15

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 16

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 24

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 32

Modes "1024x768"

EndSubSection

EndSection

Warning

As you can see I have only given X the option of "1024x768", and have a default colour depth of 24 bits,
which you should only use if you know your monitor can handle it. Consult the accompanying monitor
literature or the monitor manufacturer if you are unsure. If you can not put your hands on any clear
information use a default colour depth of 8. Probably you can't do any damage at that setting. As for the
resolution, use whatever you prefer and you should be ready to rock.

I am going to be boring and say it again, but a more complete understanding than I can give here of the
mysteries of the XF86Config file can be achieved by closely reading the man page (see above). This is
really important if you want to have a chance of solving any problems that are bound to come up now and
again, that have not been covered here.

That should do it. Now save XF86Config and run:

startx

It should work. It did for me. You will be happy. If not contact me at <trussl@hotmail.com> and I will
endeavour to help you.

Note: This is a kind of a p.s. to this section but may be helpful. I had a wee problem when
going through the XF86Config part of this HOWTO during a test run. It stemmed from
having read but not fully understood some blurb about the i810 and X4.x not working at all
resolutions with a buffer extension (or something like that). Anyway, I made no notes about

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 7

mailto:trussl@hotmail.com

this and cannot therefore remember exactly what I read. Because I remember this vaguely I
can only say the following with certainty; you need the following stanza at the beginning of
your XF86Config file:

This loads the DBE extension module

Load "dbe" # Double buffer extension

This loads the miscellaneous extensions module, and
disables

initialisation of the XFree86−DGA extension within that
module.

SubSection "extmod"

Option "omit xfree86−dga" # don't initialise the DGA extension

EndSubSection

So if X reports errors about a "shape extender" or "shape extension", you may well find that
your XF86Config file is missing the above listed stanza.

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 8

3. Thank you
I must point out that I would not have known how to fix the i810 and X4.x problem if it were not for the
pioneering efforts of Val Henson who guided me through the process and recommended the 2.4.0 kernel in
the first place. And now that this is an ammended version, I would also like to thank Heron Ordonez for
pointing out a few problems which I have in part addressed, and will fully address in due course. Curtis Stone
pointed out to me that the features I thought only available in the 2.4.0 kernel were present in 2.2.18. Thanks
to him too. If this process carries on in this fashion the 'Thank you' will one day be the largest section of this
HOWTO. This is an open process and all comments (politely phrased of course!) are welcome.

3. Thank you 9

	Table of Contents
	1. Introduction
	2. Down to business
	2.1. Getting and installing X4.x
	2.2. Get and compile kernel 2.2.18 or 2.4.0 (including mknod agpgart stuff)
	2.3. Nimbly tweak XF86Config

	3. Thank you

