
Advanced Bash−Scripting HOWTO

A guide to shell scripting, using Bash

Mendel Cooper

thegrendel@theriver.com

This is a major update on version 0.2. −− more bugs swatted, plus much additional material and example
scripts added. This project has now reached the proportions of an entire book. See NEWS for a revision
history.

This document is both a tutorial and a reference on shell scripting with Bash. It assumes no previous
knowledge of scripting or programming, but progresses rapidly toward an intermediate/advanced level of
instruction. The exercises and heavily−commented examples invite active reader participation. Still, it is a
work in progress. The intention is to add much supplementary material in future updates to this HOWTO, so
that it will gradually evolve into an LDP "guide", i.e., a complete book.

The latest version of this document, as an archived "tarball" including both the SGML source and rendered
HTML, may be downloaded here from the author's home site.

http://personal.riverusers.com/~thegrendel/abs-HOWTO-0.3.tar.gz

Table of Contents
Chapter 1. Why Shell Programming?...1

Chapter 2. Starting Off With a Sha−Bang...3
2.1. Invoking the script..4
2.2. Shell wrapper, self−executing script...5

Chapter 3. Tutorial / Reference...8
3.1. exit and exit status...8
3.2. Special characters used in shell scripts...9
3.3. Introduction to Variables and Parameters...14
3.3.1. Parameter Substitution...15
3.4. Quoting...19
3.5. Tests..21
3.5.1. File test operators...23
3.5.2. Comparison operators (binary)..25
3.6. Operations and Related Topics...29
3.6.1. Operations..29
3.6.2. Numerical Constants..33
3.7. Variables Revisited...34
3.7.1. Typing variables: declare or typeset..45
3.7.2. Indirect References to Variables..46
3.7.3. $RANDOM: generate random integer...47
3.8. Loops..49
3.9. Internal Commands and Builtins..57
3.9.1. Job Control Commands...65
3.10. External Filters, Programs and Commands..66
3.10.1. Basic Commands...66
3.10.2. Complex Commands..69
3.10.3. Time / Date Commands...74
3.10.4. Text Processing Commands...76
3.10.5. File and Archiving Commands..84
3.10.6. Communications Commands...87
3.10.7. Miscellaneous Commands...88
3.11. System and Administrative Commands..91
3.12. Backticks (`COMMAND`)...99
3.13. I/O Redirection..100
3.14. Recess Time..104
3.15. Regular Expressions..104
3.15.1. A Brief Introduction to Regular Expressions...104
3.15.2. Using REs in scripts...105
3.16. Subshells...105
3.17. Restricted Shells...107
3.18. Process Substitution..108
3.19. Functions...108
3.20. Aliases...113
3.21. List Constructs..115
3.22. Arrays..116
3.23. Files...122

Advanced Bash−Scripting HOWTO

i

Table of Contents
3.24. Here Documents..122
3.25. Of Zeros and Nulls..125
3.26. Debugging...126
3.27. Options..129
3.28. Gotchas...131
3.29. Miscellany...133
3.29.1. Interactive and non−interactive scripts..133
3.29.2. Optimizations...134
3.29.3. Assorted Tips...134
3.30. Bash, version 2..135

Chapter 4. Credits...139

Bibliography..140

Appendix A. Contributed Scripts..143

Appendix B. A Sed and Awk Micro−Primer..151
B.1. Sed..151
B.2. Awk..153

Notes...154

Appendix C. A Sample .bashrc File..163

Appendix D. Copyright ..163

Advanced Bash−Scripting HOWTO

ii

Chapter 1. Why Shell Programming?
The shell is a command interpreter. It is the insulating layer between the operating system kernel and the
user. Yet, it is also a fairly powerful programming language. A shell program, called a script , is an
easy−to−use tool for building applications by "gluing" together system calls, tools, utilities, and compiled
binaries. Virtually the entire repertoire of UNIX commands, utilities, and tools is available for invocation by
a shell script. If that were not enough, internal shell commands, such as testing and loop constructs, give
additional power and flexibility to scripts. Shell scripts lend themselves exceptionally well to to
administrative system tasks and other routine repetitive jobs not requiring the bells and whistles of a
full−blown tightly structured programming language.

A working knowledge of shell scripting is essential to everyone wishing to become reasonably adept at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /etc/rc.d to restore the system configuration and
set up services. A detailed understanding of these scripts is important for analyzing the behavior of a system,
and possibly modifying it.

Writing shell scripts is not hard to learn, since the scripts can be built in bite−sized sections and there is only
a fairly small set of shell−specific operators and options to learn. The syntax is simple and straightforward,
similar to that of invoking and chaining together utilities at the command line, and there are only a few
"rules" to learn. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

A shell script is a "quick and dirty" method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a shell script, even if slowly, is often a useful first stage in project
development. This way, the structure of the application can be tested and played with, and the major pitfalls
found before proceeding to the final coding in C, C++, Java, or Perl.

Shell scripting hearkens back to the classical UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all−in−one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you
to alter your thinking processes to fit the tool.

When not to use shell scripts

resource−intensive tasks, especially where speed is a factor•
complex applications, where structured programming is a necessity•
mission−critical applications upon which you are betting the ranch, or the future of the company•
situations where security is important, where you need to protect against hacking•
project consists of subcomponents with interlocking dependencies•
extensive file operations required (Bash is limited to serial file access, and that only in a particularly
clumsy and inefficient line−by−line fashion)

•

need to generate or manipulate graphics or GUIs•
need direct access to system hardware•
need port or socket I/O•
need to use libraries or interface with legacy code•

If any of the above applies, consider a more powerful scripting language, perhaps Perl, Tcl, Python, or
possibly a high−level compiled language such as C, C++, or Java. Even then, prototyping the application as a

Chapter 1. Why Shell Programming? 1

shell script might still be a useful development step.

We will be using Bash, an acronym for "Born−Again Shell" and a pun on Stephen Bourne's now classic
Bourne Shell. Bash has become the de facto standard for shell scripting on all flavors of UNIX. Most of the
principles dealt with in this document apply equally well to scripting with other shells, such as the Korn
Shell, from which Bash derives some of its features, [1] and the C Shell and its variants. (Note that C Shell
programming is not recommended due to certain inherent problems, as pointed out in a news group
posting by Tom Christiansen in October of 1993).

The following is a tutorial in shell scripting. It relies heavily on examples to illustrate features of the shell. As
far as possible, the example scripts have been tested, and some of them may actually be useful in real life.
The reader should use the actual examples in the the source archive (something−or−other.sh), give
them execute permission (chmod u+x scriptname), then run them to see what happens. Should the
source archive not be available, then cut−and−paste from the HTML, pdf, or text rendered versions. Be aware
that some of the scripts below introduce features before they are explained, and this may require the reader to
temporarily skip ahead for enlightenment.

Unless otherwise noted, the author of this document wrote the example scripts that follow.

Advanced Bash−Scripting HOWTO

Chapter 1. Why Shell Programming? 2

http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://www.etext.org/Quartz/computer/unix/csh.harmful.gz

Chapter 2. Starting Off With a Sha−Bang
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2−1. cleanup: A script to clean up the log files in /var/log

cleanup
Run as root, of course.

cd /var/log
cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up."

There is nothing unusual here, just a set of commands that could just as easily be invoked one by one from
the command line on the console or in an xterm. The advantages of placing the commands in a script go
beyond not having to retype them time and again. The script can easily be modified, customized, or
generalized for a particular application.

Example 2−2. cleanup: An enhanced and generalized version of above script.

#!/bin/bash
cleanup, version 2
Run as root, of course.

if [−n $1]
Test if command line argument present.
then
 lines=$1
else
 lines=50
 # default, if not specified on command line.
fi

cd /var/log
tail −$lines messages > mesg.temp
Saves last section of message log file.
mv mesg.temp messages

cat /dev/null > messages
No longer needed, as the above method is safer.

cat /dev/null > wtmp
echo "Logs cleaned up."

exit 0
A zero return value from the script upon exit
indicates success to the shell.

Since you may not wish to wipe out the entire system log, this variant of the first script keeps the last section
of the message log intact. You will constantly discover ways of refining previously written scripts for
increased effectiveness.

Chapter 2. Starting Off With a Sha−Bang 3

The
 sha−bang (#!) at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two byte " magic number", a special marker that
designates an executable shell script (man magic gives more info on this fascinating topic). Immediately
following the sha−bang is a path name. This is the path to the program that interprets the commands in the
script, whether it be a shell, a programming language, or a utility. This enables the specific commands and
directives embedded in the shell or program called.

#!/bin/sh
#!/bin/bash #!/bin/awk #!/usr/bin/perl #!/bin/sed
#!/usr/bin/tcl

Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell
(bash in a Linux system) or otherwise. Using #!/bin/sh, the default Bourne Shell in most commercial
variants of UNIX, makes the script portable to non−Linux machines, though you may have to sacrifice a few
bash−specific features (the script will conform to the POSIX sh standard).

Note that the path given at the "sha−bang" must be correct, otherwise an error message, usually Command
not found will be the only result of running the script.

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. Example 2, above, requires the initial #!, since the variable assignment line, lines=50, uses a
shell−specific construct. Note that #!/bin/sh invokes the default shell interpreter, which defaults to
/bin/bash on a Linux machine.

Important: This tutorial encourages a modular approach to constructing a script. Make note
of and collect "boilerplate" code snippets that might be useful in future scripts. Eventually
you can build a quite extensive library of nifty routines. As an example, the following script
prolog tests whether the script has been invoked with the correct number of parameters.

if [$# −ne Number_of_expected args]
then
 echo "Usage: `basename $0` whatever"
 exit $WRONG_ARGS
fi

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, or alternately bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from stdin within the
script.) Much more convenient is to make the script itself directly executable by

Either:

chmod 755 scriptname (gives everyone execute permission)

or

chmod +x scriptname (gives everyone execute permission)

chmod u+x scriptname (gives only the script owner execute permission)

Advanced Bash−Scripting HOWTO

2.1. Invoking the script 4

In this case, you could try calling the script by ./scriptname.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as
root, of course), to make the script available to yourself and all other users as a system−wide executable. The
script could then be invoked by simply typing scriptname [return] from the command line.

2.2. Shell wrapper, self−executing script

A sed or awk script (see Appendix B) would normally be invoked from the command line by a sed −e
'commands' or awk −e 'commands'. Embedding such a script in a bash script permits calling it more
simply, and makes it "reusable". This also enables combining the functionality of sed and awk, for example
piping the output of a set of sed commands to awk. As a saved executable file, you can then repeatedly
invoke it in its original form or modified, without the inconvenience of retyping it on the command line.

Example 2−3. shell wrapper

#!/bin/bash

This is a simple script
that removes blank lines
from a file.
No argument checking.

Same as
sed −e '/^$/d $1' filename
invoked from the command line.

sed −e /^$/d $1
'^' is beginning of line,
'$' is end,
and 'd' is delete.

Example 2−4. A slightly more complex shell wrapper

#!/bin/bash

"subst", a script that substitutes one pattern for
another in a file,
i.e., "subst Smith Jones letter.txt".

if [$# −ne 3]
Test number of arguments to script
(always a good idea).
then
 echo "Usage: `basename $0` old−pattern new−pattern filename"
 exit 1
fi

old_pattern=$1
new_pattern=$2

if [−f $3]
then

Advanced Bash−Scripting HOWTO

2.2. Shell wrapper, self−executing script 5

 file_name=$3
else
 echo "File \"$3\" does not exist."
 exit 2
fi

Here is where the heavy work gets done.
sed −e "s/$old_pattern/$new_pattern/" $file_name
's' is, of course, the substitute command in sed,
and /pattern/ invokes address matching.
Read the literature on 'sed' for a more
in−depth explanation.

exit 0
Successful invocation of the script returns 0.

Example 2−5. A shell wrapper around an awk script

#!/bin/bash

Adds up a specified column (of numbers) in the target file.

if [$# −ne 2]
Check for proper no. of command line args.
then
 echo "Usage: `basename $0` filename column−number"
 exit 1
fi

filename=$1
column_number=$2

Passing shell variables to the awk part of the script is a bit tricky.
See the awk documentation for more details.

A multi−line awk script is invoked by awk ' '

Begin awk script.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
awk '

{ total += $'"${column_number}"'
}
END {
 print total
}

' $filename
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End awk script.

exit 0

For those scripts needing a single do−it−all tool, a Swiss army knife, there is Perl. Perl combines the
capabilities of sed and awk, and throws in a large subset of C, to boot. It is modular and contains support for
everything ranging from object−oriented programming up to and including the kitchen sink. Short Perl scripts
can be effectively embedded in shell scripts, and there may even be some substance to the claim that Perl can

Advanced Bash−Scripting HOWTO

2.2. Shell wrapper, self−executing script 6

totally replace shell scripting (though the author of this HOWTO remains skeptical).

Example 2−6. Perl embedded in a bash script

#!/bin/bash

Some shell commands may precede the Perl script.

perl −e 'print "This is an embedded Perl script\n"'
Like sed and awk, Perl also uses the "−e" option.

Some shell commands may follow.

exit 0

Exercise. Write a shell script that performs a simple task.

Advanced Bash−Scripting HOWTO

2.2. Shell wrapper, self−executing script 7

Chapter 3. Tutorial / Reference

...there are dark corners in the Bourne shell, and
people use all of them.

Chet Ramey

3.1. exit and exit status

The exit command may be used to terminate a script, just as in a C program. It can also return a value, which
is available to the shell.

Every command returns an exit status (sometimes referred to as a return status). A successful command
returns a 0, while an unsuccessful one returns a non−zero value that usually may be interpreted as an error
code.

Likewise, functions within a script and the script itself return an exit status. The last command executed in
the function or script determines the exit status. Within a script, an exit nn command may be used to
deliver an nn exit status to the shell (nn must be a decimal number in the 0 − 255 range).

$? reads the exit status of script or function.

Example 3−1. exit / exit status

#!/bin/bash

echo hello
echo $?
exit status 0 returned
because command successful.

lskdf
bad command
echo $?
non−zero exit status returned.

echo

exit 143
Will return 143 to shell.
To verify this, type $? after script terminates.

By convention, an 'exit 0' shows success,
while a non−zero exit value indicates an error or anomalous condition.

It is also appropriate for the script to use the exit status
to communicate with other processes, as when in a pipe with other scripts.

Chapter 3. Tutorial / Reference 8

3.2. Special characters used in shell scripts

#

Comments. Lines beginning with a # (with the exception of #!) are comments.

This line is a comment.

Comments may also occur at the end of a command.

echo "A comment will follow." # Comment here.

Comments may also follow white space at the beginning of a line.

 # A tab precedes this comment.

Caution

A command may not follow after a comment on the same line. There is no method of terminating
the comment, in order for "live code" to begin on the same line. Use a new line for the next
command.

;

Command separator. Permits putting two or more commands on the same line.

echo hello; echo there

Note that the ; sometimes needs to be escaped (\).

.

"dot" command. Equivalent to source, explained further on (see Example 3−44).
:

null command. Exit status 0, alias for true

Endless loop:

while :
do
 operation−1
 operation−2
 ...
 operation−n
done

Placeholder in if/then test:

if condition
then : # Do nothing and branch ahead

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 9

else
 take−some−action
fi

Provides a placeholder where a binary operation is expected, see Section 3.3.1.

: ${username=`whoami`}
${username=`whoami`} without the leading : gives an error

Evaluate string of variables using "parameter substitution", see Example 3−6:

: ${HOSTNAME?} ${USER?} ${MAIL?}

Prints error message if one or more of essential environmental variables not set.

()

command group.

(a=hello; echo $a)

Note: A listing of commands within parentheses starts a subshell (see Section 3.16).
${}

Parameter substitution.

See Section 3.3 for more details.

{xxx,yyy,zzz,...}

Brace expansion.

grep Linux {file?.txt,*.list}
Finds all instances of the work "Linux"
in the files "fileA.txt", "file2.txt", "word.list", "vegetable.list", etc.

A command may act upon a comma−separated list of file specs within braces. Filename expansion
(globbing) applies to the file specs between the braces.

Warning

No spaces allowed within the braces.

{}

Block of code. Also referred to as an "inline group", this construct, in effect, creates an anonymous function.
Similar to a function, a code block permits isolation from the remainder of the script, with its own local
variables visible only within the scope of the block.

The code block enclosed in braces may have I/O redirected to and from it. See Section 3.13 for a detailed
discussion of I/O redirection.

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 10

Example 3−2. Code blocks and I/O redirection

#!/bin/bash

{
read fstab
} < /etc/fstab

echo "First line in /etc/fstab is:"
echo "$fstab"

exit 0

Example 3−3. Saving the results of a code block to a file

#!/bin/bash

rpm−check
−−−−−−−−−
Queries an rpm file for description, listing, and whether it can be installed.
Saves output to a file.

This script illustrates using a code block.

NOARGS=1

if [−z $1]
then
 echo "Usage: `basename $0` rpm−file"
 exit $NOARGS
fi

{
 echo
 echo "Archive Description:"
 rpm −qpi $1 #Query description.
 echo
 echo "Archive Listing:"
 rpm −qpl $1 #Query listing.
 echo
 rpm −i −−test $1 #Query whether rpm file can be installed.
 if [! $?]
 then
 echo "$1 can be installed."
 else
 echo "$1 cannot be installed."
 fi
 echo
} > $1.test # Redirects output of everything in block to file.

echo "Results of rpm test in file $1.test"

See rpm man page for explanation of options.

exit 0

/{}

file pathname. Mostly used in 'find' constructs.

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 11

> >& >> <

redirection.

scriptname >filename redirects the output of scriptname to file filename. Overwrite
filename if it already exists.

command >&2 redirects output of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If filename does
not already exist, it will be created.

For a more detailed explanation, see Section 3.13.

<<

redirection used in "here document". See Section 3.24.
|

pipe. Passes the output of previous command to next one, or to shell. This is a method of chaining commands
together.

echo ls −l | sh

passes the output of "ls −l" to the shell, with the same result as a simple "ls −l".

cat *.lst | sort | uniq

sorts the output of all the .lst files and deletes duplicate lines.

Note: If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal. (See Section 3.26 for
more detail on signals.)

>|

force redirection (even if noclobber environmental variable is in effect). This will forcibly overwrite
an existing file.

−

redirection from/to stdin or stdout.

(cd /source/directory && tar cf − .) | (cd /dest/directory && tar xvfp −)
Move entire file tree from one directory to another
[courtesy Alan Cox, a.cox@swansea.ac.uk]
#
More elegant than, but equivalent to:
cd source−directory
tar cf − . | (cd ../target−directory; tar xzf −)

bunzip2 linux−2.4.3.tar.bz2 | tar xvf −
−−uncompress tar file−− | −−then pass it to "tar"−−

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 12

If "tar" has not been patched to handle "bunzip2",
this needs to be done in two discrete steps, using a pipe.
The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "−" is not itself a Bash operator, but rather an option recognized by certain UNIX
utilities.

Where a filename is expected, redirects output to stdout (mostly seen with tar cf)

Example 3−4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory
modified within last 24 hours
in a tarred and gzipped file.

if [$# = 0]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

tar cvf − `find . −mtime −1 −type f −print` > $1.tar
gzip $1.tar

exit 0

−

previous working directory. cd − changes to previous working directory. This uses the
$OLDPWD environmental variable (see Section 3.7).

Caution

This is not to be confused with the "−" redirection operator just discussed. How Bash interprets
the "−" depends on the context in which it appears.

~

home directory. ~bozo is bozo's home directory, and ls ~bozo lists the contents of it. ~/ is the current user's
home directory, and ls ~/ lists the contents of it.

White space

functions as a separator, separating commands or variables. White space consists of either spaces, tabs,
blank lines, or any combination thereof. In some contexts, such as variable assignment, white space is not
permitted, and results in a syntax error.

Blank lines

Blank lines have no effect on the action of a script, and are therefore useful for visually separating functional
sections of the script.

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 13

3.3. Introduction to Variables and Parameters

Variables are at the heart of every programming and scripting language. They are used for arithmetic
operations and manipulation of quantities, string parsing, and working in the abstract with symbols − tokens
that represent something else. A variable is nothing more than a location or set of locations in computer
memory that holds an item of data.

$

variable substitution. Let us carefully distinguish between the name of a variable and its value. If
variable1 is the name of a variable, then $variable1 is a reference to its value, the data item it
contains. The only time a variable appears "naked", without the $, is when declared or assigned (or when
exported). Assignment may be with an = (as in var1=27), in a read statement, and at the head of a loop (for
var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ") does not interfere with variable substitution. This is called
partial quoting, sometimes referred to as "weak quoting". Using single quotes (' ') causes the variable name to
be used literally, and no substitution will take place. This is full quoting, sometimes referred to as "strong
quoting".

Note that $variable is actually a simplified alternate form of ${variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 3.3.1 below).

Example 3−5. Variable assignment and substitution

#!/bin/bash

Variables: assignment and substitution

a=37.5
hello=$a
No space permitted on either side of = sign when initializing variables.

echo hello
Not a reference.

echo $hello
echo ${hello} #Identical to above.

echo "$hello"
echo "${hello}"

echo '$hello'
Variable referencing disabled by single quotes,
because $ interpreted literally.

Notice the effect of different types of quoting.

−−

It is permissible to set multiple variables on the same line,
separated by white space. Careful, this may reduce legibility.

var1=variable1 var2=variable2 var3=variable3

Advanced Bash−Scripting HOWTO

3.3. Introduction to Variables and Parameters 14

echo
echo "var1=$var1 var2=$var2 var3=$var3"

−−

echo; echo

numbers="one two three"
other_numbers="1 2 3"
If whitespace within variables, then quotes necessary.
echo "numbers = $numbers"
echo "other_numbers = $other_numbers"
echo

echo "uninitialized variable = $uninitialized_variable"
Uninitialized variable has null value (no value at all).

echo

exit 0

Warning

An uninitialized variable has a "null" value − no assigned value at all (not zero!). Using a variable
before assigning a value to it will inevitably cause problems.

3.3.1. Parameter Substitution

${parameter}

Same as $parameter, i.e., value of the variable parameter.

May be used for concatenating variables with strings.

your_id=${USER}−on−${HOSTNAME}
echo "$your_id"
#
echo "Old \$PATH = $PATH"
PATH=${PATH}:/opt/bin #Add /opt/bin to $PATH for duration of script.
echo "New \$PATH = $PATH"

${parameter−default}

If parameter not set, use default.

echo ${username−`whoami`}
Echoes the result of `whoami`, but variable "username" is still unset.

Note: This is almost equivalent to ${parameter:−default}. The extra : makes a
difference only when parameter has been declared, but is null.

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.3.1. Parameter Substitution 15

username0=
echo "username0 = ${username0−`whoami`}"
username0 has been declared, but is set to null.
Will not echo.

echo "username1 = ${username1−`whoami`}"
username1 has not been declared.
Will echo.

username2=
echo "username2 = ${username2:−`whoami`}"
username2 has been declared, but is set to null.
Will echo because of :− rather than just − in condition test.

exit 0

${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared and is null,
as above.

echo ${username=`whoami`}
Variable "username" is now set to `whoami`.

${parameter+otherwise}, ${parameter:+otherwise}

If parameter set, use 'otherwise", else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared and is null,
as above.

${parameter?err_msg}, ${parameter:?err_msg}

If parameter set, use it, else print err_msg.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared and is null,
as above.

Example 3−6. Using param substitution and :

#!/bin/bash

Let's check some of the system's environmental variables.
If, for example, $USER, the name of the person
at the console, is not set, the machine will not
recognize you.

: ${HOSTNAME?} ${USER?} ${HOME} ${MAIL?}
 echo
 echo "Name of the machine is $HOSTNAME."
 echo "You are $USER."
 echo "Your home directory is $HOME."
 echo "Your mail INBOX is located in $MAIL."

Advanced Bash−Scripting HOWTO

3.3.1. Parameter Substitution 16

 echo
 echo "If you are reading this message,"
 echo "critical environmental variables have been set."
 echo
 echo

The ':' operator seems fairly error tolerant.
This script works even if the '$' omitted in front of
{HOSTNAME}, {USER?}, {HOME?}, and {MAIL?}. Why?

−−

The ${variablename?} construction can also check
for variables set within the script.

ThisVariable=Value−of−ThisVariable
Note, by the way, that string variables may be set
to characters disallowed in their names.
: ${ThisVariable?}
echo "Value of ThisVariable is $ThisVariable".
echo
echo

If ZZXy23AB has not been set...
: ${ZZXy23AB?}
This will give you an error message and terminate.

echo "You will not see this message."

exit 0

Parameter substitution and/or expansion. The following expressions are the complement to the
match in expr string operations (see Example 3−52). These particular ones are used mostly in parsing file
path names.

${var#pattern}, ${var##pattern}

Strip off shortest/longest part of pattern if it matches the front end of variable.

${var%pattern}, ${var%%pattern}

Strip off shortest/longest part of pattern if it matches the back end of variable.

Version 2 of bash adds additional options.

Example 3−7. Renaming file extensions:

#!/bin/bash

rfe
−−−

Renaming file extensions.
#
rfe old_extension new_extension
#
Example:

Advanced Bash−Scripting HOWTO

3.3.1. Parameter Substitution 17

To rename all *.gif files in working directory to *.jpg,
rfe gif jpg

if [$# −ne 2]
then
 echo "Usage: `basename $0` old_file_suffix new_file_suffix"
 exit 1
fi

for filename in *.$1
Traverse list of files ending with 1st argument.
do
 mv $filename ${filename%$1}$2
 # Strip off part of filename matching 1st argument,
 # then append 2nd argument.
done

exit 0

${var:pos}

Variable var expanded, starting from offset pos.

${var:pos:len}

Expansion to a max of len characters of variable var, from offset pos. See Example A−6 for an
example of the creative use of this operator.

${var/patt/replacement}

First match of patt, within var replaced with replacement.

If replacement is omitted, then the first match of patt is replaced by nothing, that is, deleted.

${var//patt/replacement}

All matches of patt, within var replaced with replacement.

Similar to above, if replacement is omitted, then all occurrences patt are replaced by nothing,
that is, deleted.

Example 3−8. Using pattern matching to parse arbitrary strings

#!/bin/bash

var1=abcd−1234−defg
echo "var1 = $var1"

t=${var1#*−*}
echo "var1 (with everything, up to and including first − stripped out) = $t"
t=${var1%*−*}
echo "var1 (with everything from the last − on stripped out) = $t"

echo

Advanced Bash−Scripting HOWTO

3.3.1. Parameter Substitution 18

path_name=/home/bozo/ideas/thoughts.for.today
echo "path_name = $path_name"
t=${path_name##/*/}
Same effect as t=`basename $path_name`
echo "path_name, stripped of prefixes = $t"
t=${path_name%/*.*}
Same effect as t=`dirname $path_name`
echo "path_name, stripped of suffixes = $t"

echo

t=${path_name:11}
echo "$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}
echo "$path_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}
echo "$path_name with \"bozo\" replaced by \"clown\" = $t"
t=${path_name/today/}
echo "$path_name with \"today\" deleted = $t"
t=${path_name//o/O}
echo "$path_name with all o's capitalized = $t"
t=${path_name//o/}
echo "$path_name with all o's deleted = $t"

exit 0

3.4. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning, such as the wild card character, *.)

When referencing a variable, it is generally advisable in enclose it in double quotes (" "). This preserves all
special characters within the variable name, except $, ', and \. This allows referencing it, that is, replacing the
variable with its value (see Example 3−5, above). Enclosing the arguments to an echo statement in double
quotes is usually a good practice (and sometimes required, see Section 3.28).

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

Escaping is a method of quoting single characters. The escape (\) preceding a character will either toggle on
or turn off a special meaning for that character, depending on context.

\n

means newline

\r

Advanced Bash−Scripting HOWTO

3.4. Quoting 19

means return

\t

means tab

\v

means vertical tab

\b

means backspace

\a

means "alert" (beep or flash)

\0xx

translates to the octal ASCII equivalent of 0xx

Use the −e option with 'echo' to print these.
echo −e "\v\v\v\v" # Prints 4 vertical tabs.
echo −e "\042" # Prints " (quote, ASCII character 42).

\"

gives the quote its literal meaning

echo "Hello" # Hello
echo "\"Hello\", he said." # "Hello", he said.

\$

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

echo "\$variable01" # results in $variable01

\\

gives the backslash its literal meaning

echo "\\" # results in \

The escape also provides a means of writing a multi−line command. Normally, each separate line constitutes
a different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues onto the next line.

(cd /source/directory && tar cf − .) | \
(cd /dest/directory && tar xvfp −)
Repeating Alan Cox's directory tree copy command,

Advanced Bash−Scripting HOWTO

3.4. Quoting 20

but split into two lines for increased legibility.

3.5. Tests

The if/then construct tests whether a condition is true, and if so, executes one or more commands. Note that
in this context, 0 (zero) will evaluate as true, as will a random string of alphanumerics. Puzzling out the logic
of this is left as an exercise for the reader.

Example 3−9. What is truth?

#!/bin/bash

if [0]
#zero
then
 echo "0 is true."
else
 echo "0 is false."
fi

if []
#NULL (empty condition)
then
 echo "NULL is true."
else
 echo "NULL is false."
fi

if [xyz]
#string
then
 echo "Random string is true."
else
 echo "Random string is false."
fi

if [$xyz]
#string
then
 echo "Undeclared variable is true."
else
 echo "Undeclared variable is false."
fi

exit 0

Exercise. Explain the behavior of Example 3−9, above.

if [condition−true]
then
 command 1
 command 2
 ...
else
 # Optional (may be left out if not needed).
 # Adds default code block executing if original condition tests false.

Advanced Bash−Scripting HOWTO

3.5. Tests 21

 command 3
 command 4
 ...
fi

Add a semicolon when 'if' and 'then' are on same line.

if [−x filename]; then

elif

This is a contraction for else if. The effect is to nest an inner if/then construction within an outer one.

if [condition]
then
 command
 command
 command
elif
Same as else if
then
 command
 command
else
 default−command
fi

The test condition−true construct is the exact equivalent of if [condition−true]. The left
bracket [is, in fact, an alias for test. (The closing right bracket] in a test should not therefore be strictly
necessary, however newer versions of bash detect it as a syntax error and complain.)

Example 3−10. Equivalence of [] and test

#!/bin/bash

echo

if test −z $1
then
 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

Both code blocks are functionally identical.

if [−z $1]
if [−z $1
also works, but outputs an error message.
then
 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

Advanced Bash−Scripting HOWTO

3.5. Tests 22

echo

exit 0

3.5.1. File test operators

Returns true if...

−e

file exists

−f

file is a regular file

−s

file is not zero size

−d

file is a directory

−b

file is a block device (floppy, cdrom, etc.)

−c

file is a character device (keyboard, modem, sound card, etc.)

−p

file is a pipe

−L

file is a symbolic link

−S

file is a socket

−r

file is readable (has read permission)

−w

Advanced Bash−Scripting HOWTO

3.5.1. File test operators 23

file has write permission

−x

file has execute permission

−g

group−id flag set on file

−u

user−id flag set on file

−k

"sticky bit" set (if user does not own a directory that has the sticky bit set, she cannot delete files in it,
not even files she owns)

−O

you are owner of file

−G

group−id of file same as yours

−t n

file descriptor n is open

This usually refers to stdin, stdout, and stderr (file descriptors 0 − 2).

f1 −nt f2

file f1 is newer than f2

f1 −ot f2

file f1 is older than f2

f1 −ef f2

files f1 and f2 are links to the same file

!

"not" −− reverses the sense of the tests above (returns true if condition absent).

Example 3−11. Tests, command chaining, redirection

Advanced Bash−Scripting HOWTO

3.5.1. File test operators 24

#!/bin/bash

This line is a comment.

filename=sys.log

if [! −f $filename]
then
 touch $filename; echo "Creating file."
else
 cat /dev/null > $filename; echo "Cleaning out file."
fi

Of course, /var/log/messages must have
world read permission (644) for this to work.
tail /var/log/messages > $filename
echo "$filename contains tail end of system log."

exit 0

3.5.2. Comparison operators (binary)

integer comparison

−eq

is equal to ($a −eq $b)

−ne

is not equal to ($a −ne $b)

−gt

is greater than ($a −gt $b)

−ge

is greater than or equal to ($a −ge $b)

−lt

is less than ($a −lt $b)

−le

is less than or equal to ($a −le $b)

string comparison

=

is equal to ($a = $b)

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 25

!=

is not equal to ($a != $b)

\<

is less than, in ASCII alphabetical order ($a \< $b)

Note that the "<" needs to be escaped.

\>

is greater than, in ASCII alphabetical order ($a \> $b)

Note that the ">" needs to be escaped.

See Example 3−91 for an application of this comparison operator.

−z

string is "null", that is, has zero length

−n

string is not "null".

Caution

This test requires that the string be quoted within the test brackets. You may use ! −z instead, or
even just the string itself, without a test operator (see Example 3−13).

Example 3−12. arithmetic and string comparisons

#!/bin/bash

a=4
b=5

Here a and b can be treated either as integers or strings.
There is some blurring between the arithmetic and integer comparisons.
Be careful.

if [$a −ne $b]
then
 echo "$a is not equal to $b"
 echo "(arithmetic comparison)"
fi

echo

if [$a != $b]
then

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 26

 echo "$a is not equal to $b."
 echo "(string comparison)"
fi

echo

exit 0

Example 3−13. testing whether a string is null

#!/bin/bash

If a string has not been initialized, it has no defined value.
This state is called "null" (not the same as zero).

if [−n $string1] # $string1 has not been declared or initialized.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
Wrong result.
Shows $string1 as not null, although it was not initialized.

echo

Lets try it again.

if [−n "$string1"] # This time, $string1 is quoted.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi

echo

if [$string1] # This time, $string1 stands naked.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
This works fine.
The [] test operator alone detects whether the string is null.

echo

string1=initialized

if [$string1] # This time, $string1 stands naked.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
Again, gives correct result.

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 27

exit 0

Thanks to Florian Wisser for pointing this out.

Example 3−14. zmost

#!/bin/bash

#View gzipped files with 'most'

NOARGS=1

if [$# = 0]
same effect as: if [−z $1]
then
 echo "Usage: `basename $0` filename" >&2
 # Error message to stderr.
 exit $NOARGS
 # Returns 1 as exit status of script
 # (error code)
fi

filename=$1

if [! −f $filename]
then
 echo "File $filename not found!" >&2
 # Error message to stderr.
 exit 2
fi

if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then
 echo "File $1 is not a gzipped file!"
 exit 3
fi

zcat $1 | most

exit 0

Uses the file viewer 'most'
(similar to 'less')

compound comparison

−a

logical and

exp1 −a exp2 returns true if both exp1 and exp2 are true.

−o

logical or

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 28

exp1 −o exp2 returns true if either exp1 or exp2 are true.

These are simpler forms of the comparison operators && and ||, which require brackets to separate the target
expressions.

Refer to Example 3−15 to see compound comparison operators in action.

3.6. Operations and Related Topics

3.6.1. Operations

=

All−purpose assignment operator, which works for both arithmetic and string assignments.

var=27
category=minerals

May also be used in a string comparison test.

if [$string1 = $string2]
then
 command
fi

The following are normally used in combination with expr or let.

arithmetic operators

+

plus

−

minus

*

multiplication

/

division

%

modulo, or mod (returns the remainder of an integer division)

+=

Advanced Bash−Scripting HOWTO

3.6. Operations and Related Topics 29

"plus−equal" (increment variable by a constant)

`expr $var+=5` results in var being incremented by 5.

−=

"minus−equal" (decrement variable by a constant)

*=

"times−equal" (multiply variable by a constant)

`expr $var*=4` results in var being multiplied by 4.

/=

"slash−equal" (divide variable by a constant)

%=

"mod−equal" (remainder of dividing variable by a constant)

The bitwise logical operators seldom make an appearance in shell scripts. Their chief use seems to be
manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which run fast enough to permit its use on the fly.

<<

bitwise left shift (multiplies by 2 for each shift position)

<<=

"left−shift−equal"

let "var <<= 2" results in var left−shifted 2 bits (multiplied by 4)

>>

bitwise right shift (divides by 2 for each shift position)

>>=

"right−shift−equal" (inverse of <<=)

&

bitwise and

&=

"bitwise and−equal"

Advanced Bash−Scripting HOWTO

3.6. Operations and Related Topics 30

|

bitwise OR

|=

"bitwise OR−equal"

~

bitwise negate

!

bitwise NOT

^

bitwise XOR

^=

"bitwise XOR−equal"

relational tests

<

less than

>

greater than

<=

less than or equal to

>=

greater than or equal to

==

equal to (test)

!=

not equal to

&&

Advanced Bash−Scripting HOWTO

3.6. Operations and Related Topics 31

and (logical)

if [$condition1] && [$condition2]
if both condition1 and condition2 hold true...

Note: && may also, depending on context, be used to in an and list to concatenate
commands (see Section 3.21).

||

or (logical)

if [$condition1] || [$condition2]
if both condition1 or condition2 hold true...

Example 3−15. Compound Condition Tests Using && and ||

#!/bin/bash

a=24
b=47

if [$a −eq 24] && [$b −eq 47]
then
 echo "Test #1 succeeds."
else
 echo "Test #1 fails."
fi

ERROR:
if [$a −eq 24 && $b −eq 47]

if [$a −eq 98] || [$b −eq 47]
then
 echo "Test #2 succeeds."
else
 echo "Test #2 fails."
fi

The −a and −o options provide
an alternative compound condition test.
Thanks to Patrick Callahan for pointing this out.

if [$a −eq 24 −a $b −eq 47]
then
 echo "Test #3 succeeds."
else
 echo "Test #3 fails."
fi

if [$a −eq 98 −o $b −eq 47]
then
 echo "Test #4 succeeds."
else

Advanced Bash−Scripting HOWTO

3.6. Operations and Related Topics 32

 echo "Test #4 fails."
fi

a=rhino
b=crocodile
if [$a = rhino] && [$b = crocodile]
then
 echo "Test #5 succeeds."
else
 echo "Test #5 fails."
fi

exit 0

3.6.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0 is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # is evaluated as BASE#NUMBER (this option is of limited usefulness because of
range restrictions).

Example 3−16. Representation of numerical constants:

#!/bin/bash

Representation of numbers.

Decimal
let "d = 32"
echo "d = $d"
Nothing out of the ordinary here.

Octal: numbers preceded by '0'
let "o = 071"
echo "o = $o"
Expresses result in decimal.

Hexadecimal: numbers preceded by '0x' or '0X'
let "h = 0x7a"
echo "h = $h"

Other bases: BASE#NUMBER
BASE between 2 and 64.
let "b = 32#77"
echo "b = $b"
This notation only works for a very limited range of numbers.
let "c = 2#47" # Error: out of range.
echo "c = $c"

exit 0

Advanced Bash−Scripting HOWTO

3.6.2. Numerical Constants 33

3.7. Variables Revisited

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

Internal (builtin) variables

environmental variables affecting bash script behavior

$IFS

input field separator

This defaults to white space, but may be changed, for example, to parse a comma−separated data file.

$HOME

home directory of the user, usually /home/username (see Example 3−6)

$HOSTNAME

name assigned to the system, usually fetched at bootup from /etc/hosts (see Example 3−6)

$UID

user id number

current user's user identification number, as recorded in /etc/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su (see
Section 3.11). $UID is a readonly variable, not subject to change from the command line or within a
script.

$EUID

"effective" user id number

identification number of whatever identity the current user has assumed, perhaps by means of su

$GROUPS

groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /etc/passwd.

$PATH

path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 34

When given a command, the shell automatically searches the directories listed in the path for the
executable. The path is stored in the environmental variable, $PATH, a list of directories, separated
by colons. Normally, the system stores the $PATH definition in /etc/profile and/or
~/.bashrc (see Section 3.23).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=${PATH}:/opt/bin appends the /opt/bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

Note: The current "working directory", ./, is usually omitted from the $PATH as a security
measure.

$PS1

This is the main prompt, seen at the command line.

$PS2

The secondary prompt, seen when additional input is expected. It displays as ">".

$PS3

The tertiary prompt, displayed in a select loop (see Example 3−37).

$PS4

The quartenary prompt, shown at the beginning of each line of output when invoking a script with the
−x option. It displays as "+".

$PWD

working directory (directory you are in at the time)

#!/bin/bash

WRONG_DIRECTORY=33

clear # Clear screen.

TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd $TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if [$PWD != $TargetDirectory] # Keep from wiping out wrong directory by accident.
then
 echo "Wrong directory!"
 echo "In $PWD, rather than $TargetDirectory!"
 echo "Bailing out!"
 exit $WRONG_DIRECTORY

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 35

fi

rm −rf *
rm .[A−Za−z0−9]* # Delete dotfiles.

Various other operations here, as necessary.

echo
echo "Done."
echo "Old files deleted in $TargetDirectory."
echo

exit 0

$OLDPWD

old working directory (previous directory you were in)

$DIRSTACK

contents of the directory stack (affected by pushd and popd)

This builtin variable is the counterpart to the dirs command (see Section 3.9).

$PPID

the process id (pid) of the currently running process

This corresponds to the pidof command (see Section 3.11).

$MACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
i686−debian−linux−gnu

$HOSTTYPE

host type

Like $MACHTYPE above, identifies the system hardware.

bash$ echo $HOSTTYPE
i686

$OSTYPE

operating system type

bash$ echo $OSTYPE

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 36

linux−gnu

$EDITOR

the default editor invoked by a script, usually vi or emacs.

$IGNOREEOF

ignore EOF: how many end−of−files (control−D) the shell will ignore before logging out.

$TMOUT

If the $TMOUT environmental variable is set to a non−zero value time, then the shell prompt will time out
after time seconds. This will cause a logout.

Note: Unfortunately, this works only while waiting for input at the shell prompt console or in
an xterm. While it would be nice to speculate on the uses of this internal variable for timed
input, for example in combination with read, $TMOUT does not work in that context and is
virtually useless for shell scripting. (Reportedly the ksh version of a timed read does work).

Implementing timed input in a script is certainly possible, but hardly seems worth the effort. It requires
setting up a timing loop to signal the script when it times out. Additionally, a signal handling routine is
necessary to trap (see Example 3−100) the interrupt generated by the timing loop (whew!).

#!/bin/bash

TMOUT=3 useless in a script

TIMELIMIT=3 # Three seconds in this instance, may be set to different value.

PrintAnswer()
{
 if [$answer = TIMEOUT]
 then
 echo $answer
 else # Don't want to mix up the two instances.
 echo "Your favorite veggie is $answer"
 kill $! # Kills no longer needed TimerOn function running in background.
 # $! is PID of last job running in background.
 fi

}

TimerOn()
{
 sleep $TIMELIMIT && kill −s 14 $$ &
 # Waits 3 seconds, then sends sigalarm to script.
}

Int14Vector()
{
 answer="TIMEOUT"
 PrintAnswer
 exit 14
}

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 37

trap Int14Vector 14
Timer interrupt − 14 − subverted for our purposes.

echo "What is your favorite vegetable "
TimerOn
read answer
PrintAnswer

Admittedly, this is a kludgy implementation of timed input,
but pretty much as good as can be done with Bash.
(Challenge to reader: come up with something better.)

If you need something a bit more elegant...
consider writing the application in C or C++,
using appropriate library functions, such as 'alarm' and 'setitimer'.

exit 0

$SECONDS

The number of seconds the script has been running.

#!/bin/bash

ENDLESS_LOOP=1

echo
echo "Hit Control−C to exit this script."
echo

while [$ENDLESS_LOOP]
do
 if [$SECONDS −eq 1]
 then
 units=second
 else
 units=seconds
 fi

 echo "This script has been running $SECONDS $units."
 sleep 1
done

exit 0

$REPLY

The default value when a variable is not supplied to read. Also applicable to select menus, but only supplies
the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash

echo
echo −n "What is your favorite vegetable? "
read

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 38

echo "Your favorite vegetable is $REPLY."
REPLY holds the value of last "read" if and only if no variable supplied.

echo
echo −n "What is your favorite fruit? "
read fruit
echo "Your favorite fruit is $fruit."
echo "but..."
echo "Value of \$REPLY is still $REPLY."
$REPLY is still set to its previous value because
the variable $fruit absorbed the new "read" value.

echo

exit 0

$SHELLOPTS

the list of enabled shell options, a readonly variable

$BASH

the path to the bash binary itself, usually /bin/bash

$BASH_ENV

an environmental variable pointing to a bash startup file to be read when a script is invoked

$BASH_VERSION

the version of Bash installed on the system

bash$ echo $BASH_VERSION
2.04.12(1)−release

$0, $1, $2, etc.

positional parameters, passed from command line to script, passed to a function, or set to a variable (see
Example 3−20 and Example 3−40)

$#

number of command line arguments [2] or positional parameters (see Example 2−4)

$$

process id of script, often used in scripts to construct temp file names (see Example A−5 and Example 3−101)

$?

exit status of command, function, or the script itself (see Example 3−1 and Example 3−56)

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 39

$*

All of the positional parameters, seen as a single word

$@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list is seen
as a separate word.

Example 3−17. arglist: Listing arguments with $* and $@

#!/bin/bash
Invoke this script with several arguments, such as "one two three".

if [! −n "$1"]
then
 echo "Usage: `basename $0` argument1 argument2 etc."
 exit 1
fi

echo

index=1

echo "Listing args with \"\$*\":"
for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
do
 echo "Arg #$index = $arg"
 let "index+=1"
done # $* sees all arguments as single word.
echo "Entire arg list seen as single word."

echo

index=1

echo "Listing args with \"\$@\":"
for arg in "$@"
do
 echo "Arg #$index = $arg"
 let "index+=1"
done # $@ sees arguments as separate words.
echo "Arg list seen as separate words."

echo

exit 0

The $@ intrinsic variable finds use as a "general input filter" tool in shell scripts. The cat "$@" construction
accepts input to a script either from stdin or from files given as parameters to the script. See Example 3−59.

$−

Flags passed to script

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 40

Caution

This was originally a ksh construct adopted into Bash, and unfortunately it does not seem to work
reliably in Bash scripts. One possible use for it is to have a script self−test whether it is
interactive (see Section 3.29).

$!

PID (process id) of last job run in background

variable assignment

Initializing or changing the value of a variable

=

the assignment operator (no space before & after)

Do not confuse this with = and −eq, which test, rather than assign!

Caution

= can be either an assignment or a test operator, depending on context.

Example 3−18. Variable Assignment

#!/bin/bash

echo

When is a variable "naked", i.e., lacking the '$' in front?

Assignment
a=879
echo "The value of \"a\" is $a"

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a"

echo

In a 'for' loop (really, a type of disguised assignment)
echo −n "The values of \"a\" in the loop are "
for a in 7 8 9 11
do
 echo −n "$a "
done

echo
echo

In a 'read' statement

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 41

echo −n "Enter \"a\" "
read a
echo "The value of \"a\" is now $a"

echo

exit 0

Example 3−19. Variable Assignment, plain and fancy

#!/bin/bash

a=23
Simple case
echo $a
b=$a
echo $b

Now, getting a little bit fancier...

a=`echo Hello!`
Assigns result of 'echo' command to 'a'
echo $a

a=`ls −l`
Assigns result of 'ls −l' command to 'a'
echo $a

exit 0

Variable assignment using the $() mechanism (a newer method than back quotes)

From /etc/rc.d/rc.local
R=$(cat /etc/redhat−release)
arch=$(uname −m)

local variables

variables visible only within a code block or function (see Section 3.19)

environmental variables

variables that affect the behavior of the shell and user interface, such as the path and the prompt

If a script sets environmental variables, they need to be "exported", that is, reported to the environment local
to the script. This is the function of the export command.

Note: A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the command line
cannot export variables back to the command line environment. Child processes cannot
export variables back to the parent processes that spawned them.

−−−

positional parameters

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 42

arguments passed to the script from the command line − $0, $1, $2, $3... ($0 is the name of the script itself,
$1 is the first argument, etc.)

Example 3−20. Positional Parameters

#!/bin/bash

echo

echo The name of this script is $0
Adds ./ for current directory
echo The name of this script is `basename $0`
Strip out path name info (see 'basename')

echo

if [$1]
then
 echo "Parameter #1 is $1"
 # Need quotes to escape #
fi

if [$2]
then
 echo "Parameter #2 is $2"
fi

if [$3]
then
 echo "Parameter #3 is $3"
fi

echo

exit 0

Some scripts can perform different operations, depending on which name they are invoked with. For this to
work, the script needs to check $0, the name it was invoked by. There also have to be symbolic links present
to all the alternate names of the same script.

Note: If a script expects a command line parameter but is invoked without one, this may
cause a null variable assignment, certainly an undesirable result. One way to prevent this is to
append an extra character to both sides of the assignment statement using the expected
positional parameter.

variable1x=$1x
This will prevent an error, even if positional parameter is absent.

The extra character can be stripped off later, if desired, like so.
variable1=${variable1x/x/}
This uses one of the parameter substitution templates previously discussed.
Leaving out the replacement pattern results in a deletion.

−−−

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 43

Example 3−21. wh, whois domain name lookup

#!/bin/bash

Does a 'whois domain−name' lookup
on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script, named 'wh' in /usr/local/bin

Requires symbolic links:
ln −s /usr/local/bin/wh /usr/local/bin/wh−ripe
ln −s /usr/local/bin/wh /usr/local/bin/wh−cw
ln −s /usr/local/bin/wh /usr/local/bin/wh−radb

if [−z $1]
then
 echo "Usage: `basename $0` [domain−name]"
 exit 1
fi

case `basename $0` in
Checks script name and calls proper server
 "wh") whois $1@whois.ripe.net;;
 "wh−ripe") whois $1@whois.ripe.net;;
 "wh−radb") whois $1@whois.radb.net;;
 "wh−cw") whois $1@whois.cw.net;;
 *) echo "Usage: `basename $0` [domain−name]";;
esac

exit 0

−−−

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.

$1 <−−− $2, $2 <−−− $3, $3 <−−− $4, etc.

The old $1 disappears, but $0 does not change. If you use a large number of positional parameters to a
script, shift lets you access those past 10.

Example 3−22. Using shift

#!/bin/bash

Name this script something like shift000,
and invoke it with some parameters, for example
./shift000 a b c def 23 skidoo

Demo of using 'shift'
to step through all the positional parameters.

until [−z "$1"]
do
 echo −n "$1 "
 shift

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 44

done

echo
Extra line feed.

exit 0

3.7.1. Typing variables: declare or typeset

The declare or typeset keywords (they are exact synonyms) permit restricting the properties of variables.
This is a very weak form of the typing available in certain programming languages. The declare command is
not available in version 1 of bash.

−r readonly

declare −r var1

(declare −r var1 works the same as readonly var1)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

−i integer

declare −i var2

The script treats subsequent occurrences of var2 as an integer. Note that certain arithmetic
operations are permitted for declared integer variables without the need for expr or let.

−a array

declare −a indices

The variable indices will be treated as an array.

−f functions

declare −f # (no arguments)

A declare −f line within a script causes a listing of all the functions contained in that script.

−x export

declare −x var3

This declares a variable as available for exporting outside the environment of the script itself.

Example 3−23. Using declare to type variables

Advanced Bash−Scripting HOWTO

3.7.1. Typing variables: declare or typeset 45

#!/bin/bash

declare −f
Lists the function below.

func1 ()
{
echo This is a function.
}

declare −r var1=13.36
echo "var1 declared as $var1"
Attempt to change readonly variable.
var1=13.37
Generates error message.
echo "var1 is still $var1"

echo

declare −i var2
var2=2367
echo "var2 declared as $var2"
var2=var2+1
Integer declaration eliminates the need for 'let'.
echo "var2 incremented by 1 is $var2."
Attempt to change variable declared as integer
echo "Attempting to change var2 to floating point value, 2367.1."
var2=2367.1
results in error message, with no change to variable.
echo "var2 is still $var2"

exit 0

3.7.2. Indirect References to Variables

Assume that the value of a variable is the name of a second variable. Is it somehow possible to retrieve the
value of this second variable from the first one? For example, if a=letter_of_alphabet and
letter_of_alphabet=z, can a reference to a return z? This can indeed be done, and it is called an
indirect reference. It uses the unusual eval var1=\$$var2 notation.

Example 3−24. Indirect References

#!/bin/bash

Indirect variable referencing.

a=letter_of_alphabet
letter_of_alphabet=z

Direct reference.
echo "a = $a"

Indirect reference.
eval a=\$$a
echo "Now a = $a"

Advanced Bash−Scripting HOWTO

3.7.2. Indirect References to Variables 46

echo

Now, let's try changing the second order reference.

t=table_cell_3
table_cell_3=24
eval t=\$$t
echo "t = $t"
So far, so good.

table_cell_3=387
eval t=\$$t
echo "Value of t changed to $t"
ERROR!
Cannot indirectly reference changed value of variable this way.
For this to work, must use ${!t} notation.

exit 0

Caution

This method of indirect referencing has a weakness. If the second order variable changes its value, an
indirect reference to the first order variable produces an error. Fortunately, this flaw has been fixed in the
newer ${!variable} notation introduced with version 2 of Bash (see Example 3−103).

3.7.3. $RANDOM: generate random integer

Note: $RANDOM is an internal Bash function (not a constant) that returns a
pseudorandom integer in the range 0 − 32767. $RANDOM should not be used to generate
an encryption key.

Example 3−25. Generating random numbers

#!/bin/bash

$RANDOM returns a different random integer at each invocation.
Nominal range: 0 − 32767 (signed integer).

MAXCOUNT=10
count=1

echo
echo "$MAXCOUNT random numbers:"
echo "−−−−−−−−−−−−−−−−−"
while [$count −le $MAXCOUNT] # Generate 10 ($MAXCOUNT) random integers.
do
 number=$RANDOM
 echo $number
 let "count += 1" # Increment count.
done
echo "−−−−−−−−−−−−−−−−−"

Advanced Bash−Scripting HOWTO

3.7.3. $RANDOM: generate random integer 47

If you need a random int within a certain range, then use the 'modulo' operator.

RANGE=500

echo

number=$RANDOM
let "number %= $RANGE"
echo "Random number less than $RANGE −−> $number"

echo

If you need a random int greater than a lower bound,
then set up a test to discard all numbers below that.

FLOOR=200

number=0 #initialize
while [$number −le $FLOOR]
do
 number=$RANDOM
done
echo "Random number greater than $FLOOR −−> $number"
echo

May combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while [$number −le $FLOOR]
do
 number=$RANDOM
 let "number %= $RANGE"
done
echo "Random number between $FLOOR and $RANGE −−> $number"
echo

May generate binary choice, that is, "true" or "false" value.
BINARY=2
number=$RANDOM
let "number %= $BINARY"
if [$number −eq 1]
then
 echo "TRUE"
else
 echo "FALSE"
fi

echo

May generate toss of the dice.
SPOTS=7
DICE=2
die1=0
die2=0

Tosses each die separately, and so gives correct odds.

 while [$die1 −eq 0] #Can't have a zero come up.
 do

Advanced Bash−Scripting HOWTO

3.7.3. $RANDOM: generate random integer 48

 let "die1 = $RANDOM % $SPOTS"
 done

 while [$die2 −eq 0]
 do
 let "die2 = $RANDOM % $SPOTS"
 done

let "throw = $die1 + $die2"
echo "Throw of the dice = $throw"
echo

exit 0

Note: The variables $USER, $USERNAME, $LOGNAME, $MAIL, and $ENV are not Bash
builtins. These are, however, often set as environmental variables in one of the Bash startup
files (see Section 3.23). $SHELL is a readonly variable set from /etc/passwd and is
likewise not a Bash builtin.

3.8. Loops

A loop is a block of code that iterates (repeats) a list of commands as long as the loop control condition is
true.

for (in)

This is the basic looping construct. It differs significantly from its C counterpart.

for [arg] in [list]
do
 command...
done

Note that list may contain wild cards.

Note further that if do is on same line as for, there needs to be a semicolon before list.

for [arg] in [list] ; do

Example 3−26. Simple for loops

#!/bin/bash

for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
do
 echo $planet
done

echo

Entire 'list' enclosed in quotes creates a single variable.

Advanced Bash−Scripting HOWTO

3.8. Loops 49

for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
do
 echo $planet
done

exit 0

Note: Each [list] element may contain multiple parameters. This is useful when
processing parameters in groups. In such cases, use the set command (see Example 3−40) to
force parsing of each [list] element and assignment of each component to the positional
parameters.

Example 3−27. for loop with two parameters in each [list] element

#!/bin/bash
Planets revisited.

Want to associate name of each planet with its distance from the sun.

for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
do
 set $planet # Parses variable "planet" and sets positional parameters.
 # May need to save original positional parameters, since they get overwritten.
 echo "$1 $2,000,000 miles from the sun"
 #−−−−−−−two tabs−−−concatenate zeroes onto parameter $2
done

exit 0

Omitting the in [list] part of a for loop causes the loop to operate on $*, the list of arguments given on
the command line to the script.

Example 3−28. Missing in [list] in a for loop

#!/bin/bash

Invoke both with and without arguments,
and see what happens.

for a
do
 echo $a
done

'in list' missing, therefore operates on '$*'
(command−line argument list)

exit 0

Example 3−29. Using efax in batch mode

#!/bin/bash

if [$# −ne 2]

Advanced Bash−Scripting HOWTO

3.8. Loops 50

Check for proper no. of command line args.
then
 echo "Usage: `basename $0` phone# text−file"
 exit 1
fi

if [! −f $2]
then
 echo "File $2 is not a text file"
 exit 2
fi

Create fax formatted files from text files.
fax make $2

for file in $(ls $2.0*)
Concatenate the converted files.
Uses wild card in variable list.
do
 fil="$fil $file"
done

Do the work.
efax −d /dev/ttyS3 −o1 −t "T$1" $fil

exit 0

while

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is true.

while [condition]
do
 command...
done

As is the case with for/in loops, placing the do on the same line as the condition test requires a semicolon.

while [condition] ; do

Note that certain specialized while loops, as, for example, a getopts construct, deviate somewhat from the
standard template given here (see Section 3.9).

Example 3−30. Simple while loop

#!/bin/bash

var0=0

while ["$var0" −lt 10]
do
 echo −n "$var0 "
 # −n suppresses newline.
 var0=`expr $var0 + 1`

Advanced Bash−Scripting HOWTO

3.8. Loops 51

 # var0=$(($var0+1)) also works.
done

echo

exit 0

Example 3−31. Another while loop

#!/bin/bash

echo

while ["$var1" != end]
do
 echo "Input variable #1 (end to exit) "
 read var1
 # It's not 'read $var1' because value of var1 is being set.
 echo "variable #1 = $var1"
 # Need quotes because of #
 echo
done

Note: Echoes 'end' because termination condition tested for at top of loop.

exit 0

Note: A while loop may have multiple conditions. Only the final condition determines when
the loop terminates. This necessitates a slightly different loop syntax, however.

Example 3−32. while loop with multiple conditions

#!/bin/bash

var1=unset
previous=$var1

while echo "previous−variable = $previous"
 echo
 previous=$var1
 ["$var1" != end] # Keeps track of what "var1" was previously.
 # Four conditions on "while", but only last one controls loop.
 # Controlling condition has [test] brackets.
do
echo "Input variable #1 (end to exit) "
 read var1
 echo "variable #1 = $var1"
done

Try to figure out how this all works.
It's a wee bit tricky.

exit 0

Note: A while loop may have its stdin redirected to a file by a < at its end (see Example
3−73).

Advanced Bash−Scripting HOWTO

3.8. Loops 52

until

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is false
(opposite of while loop).

until [condition−is−true]
do
 command...
done

Note that an until loop tests for the terminating condition at the top of the loop, differing from a similar
construct in some programming languages.

As is the case with for/in loops, placing the do on the same line as the condition test requires a semicolon.

until [condition−is−true] ; do

Example 3−33. until loop

#!/bin/bash

until ["$var1" = end]
Tests condition at top of loop.
do
 echo "Input variable #1 "
 echo "(end to exit)"
 read var1
 echo "variable #1 = $var1"
done

exit 0

break, continue

The break and continue loop control commands correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while continue causes a
jump to the next iteration of the loop, skipping all the remaining commands in that particular loop cycle.

Example 3−34. Effects of break and continue in a loop

#!/bin/bash

echo
echo Printing Numbers 1 through 20.

a=0

while [$a −le 19]

do
 a=$(($a+1))

 if [$a −eq 3] || [$a −eq 11]

Advanced Bash−Scripting HOWTO

3.8. Loops 53

 # Excludes 3 and 11
 then
 continue
 # Skip rest of this particular loop iteration.
 fi

 echo −n "$a "
done

Exercise for reader:
Why does loop print up to 20?

echo
echo

echo Printing Numbers 1 through 20, but something happens after 2.

##

Same loop, but substituting 'break' for 'continue'.

a=0

while [$a −le 19]
do
 a=$(($a+1))

 if [$a −gt 2]
 then
 break
 # Skip entire rest of loop.
 fi

 echo −n "$a "
done

echo
echo

exit 0

case (in) / esac

The case construct is the shell equivalent of switch in C/C++. It permits branching to one of a number of
code blocks, depending on condition tests. It serves as a kind of shorthand for multiple if/then/else statements
and is an appropriate tool for creating menus.

case "$variable" in

 "$condition1")
command...

 ;;

 "$condition2")
command...

 ;;

esac

Advanced Bash−Scripting HOWTO

3.8. Loops 54

Note:

Quoting the variables is recommended.♦
Each test line ends with a left paren).♦
Each condition block ends with a double semicolon ;;.♦
The entire case block terminates with an esac (case spelled backwards).♦

Example 3−35. Using case

#!/bin/bash

echo
echo "Hit a key, then hit return."
read Keypress

case "$Keypress" in
 [a−z]) echo "Lowercase letter";;
 [A−Z]) echo "Uppercase letter";;
 [0−9]) echo "Digit";;
 *) echo "Punctuation, whitespace, or other";;
esac
Allows ranges of characters in [square brackets].

exit 0

Example 3−36. Creating menus using case

#!/bin/bash

Crude rolodex−type database

clear
Clear the screen.

echo " Contact List"
echo " −−−−−−− −−−−"
echo "Choose one of the following persons:"
echo
echo "[E]vans, Roland"
echo "[J]ones, Mildred"
echo "[S]mith, Julie"
echo "[Z]ane, Morris"
echo

read person

case "$person" in
Note variable is quoted.

 "E" | "e")
 # Accept upper or lowercase input.
 echo
 echo "Roland Evans"
 echo "4321 Floppy Dr."
 echo "Hardscrabble, CO 80753"
 echo "(303) 734−9874"
 echo "(303) 734−9892 fax"

Advanced Bash−Scripting HOWTO

3.8. Loops 55

 echo "revans@zzy.net"
 echo "Business partner & old friend"
 ;;
Note double semicolon to terminate
each option.

 "J" | "j")
 echo
 echo "Mildred Jones"
 echo "249 E. 7th St., Apt. 19"
 echo "New York, NY 10009"
 echo "(212) 533−2814"
 echo "(212) 533−9972 fax"
 echo "milliej@loisaida.com"
 echo "Girlfriend"
 echo "Birthday: Feb. 11"
 ;;

Add info for Smith & Zane later.

 *)
 # Default option.
 echo
 echo "Not yet in database."
 ;;

esac

echo

exit 0

select

The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in list]
do

command...
 break
done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses the
PS3 prompt (#?) by default, but that this may be changed.

Example 3−37. Creating menus using select

#!/bin/bash

PS3='Choose your favorite vegetable: '
Sets the prompt string.

echo

select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do

Advanced Bash−Scripting HOWTO

3.8. Loops 56

 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"
 echo
 break
 # if no 'break' here, keeps looping forever.
done

exit 0

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script or to
the function in which the select construct is embedded. (Compare this to the behavior of a

for variable [in list]

construct with the in list omitted.)

Example 3−38. Creating menus using select in a function

#!/bin/bash

PS3='Choose your favorite vegetable: '

echo

choice_of()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"
 echo
 break
done
}

choice_of beans rice carrots radishes tomatoes spinach
$1 $2 $3 $4 $5 $6
passed to choice_of() function

exit 0

3.9. Internal Commands and Builtins

A builtin is a command contained in the bash tool set, literally built in.

getopts

This powerful tool parses command line arguments passed to the script. This is the bash analog of the
getopt library function familiar to C programmers. It permits passing and concatenating multiple
flags[3] and options to a script (for example scriptname −abc −e /usr/local).

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 57

The getopts construct uses two implicit variables. $OPTIND is the argument pointer (OPTion
INDex) and $OPTARG (OPTion ARGument) the (optional) argument attached to a flag. A colon
following the flag name in the declaration tags that flag as having an option.

A getopts construct usually comes packaged in a while loop, which processes the flags and options
one at a time, then decrements the implicit $OPTIND variable to step to the next.

Note:

The arguments must be passed from the command line to the script preceded by a
minus (−) or a plus (+), else getopts will not process them, and will, in fact,
terminate option processing at the first argument encountered lacking these
modifiers.

1.

The getopts template differs slightly from the standard while loop, in that it lacks
condition brackets.

2.

The getopts construct replaces the obsolete getopt command.3.

while getopts ":abcde:fg" Option
Initial declaration.
a, b, c, d, e, f, and g are the flags expected.
The : after flag 'e' shows it will have an option passed with it.
do
 case $Option in
 a) # Do something with variable 'a'.
 b) # Do something with variable 'b'.
 ...
 e) # Do something with 'e', and also with $OPTARG,
 # which is the associated argument passed with 'e'.
 ...
 g) # Do something with variable 'g'.
 esac
done
shift $(($OPTIND − 1))
Move argument pointer to next.

All this is not nearly as complicated as it looks <grin>.

Example 3−39. Using getopts to read the flags/options passed to a script

#!/bin/bash

'getopts' processes command line args to script.

Usage: scriptname −options
Note: dash (−) necessary

Try invoking this script with
'scriptname −mn'
'scriptname −oq qOption'
(qOption can be some arbitrary string.)

OPTERROR=33

if [−z $1]
Exit and complain if no argument(s) given.

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 58

then
 echo "Usage: `basename $0` options (−mnopqrs)"
 exit $OPTERROR
fi

while getopts ":mnopq:rs" Option
do
 case $Option in
 m) echo "Scenario #1: option −m−";;
 n | o) echo "Scenario #2: option −$Option−";;
 p) echo "Scenario #3: option −p−";;
 q) echo "Scenario #4: option −q−, with argument \"$OPTARG\"";;
 # Note that option 'q' must have an additional argument,
 # otherwise nothing happens.
 r | s) echo "Scenario #5: option −$Option−"'';;
 *) echo "Unimplemented option chosen.";;
 esac
done

shift $(($OPTIND − 1))
Decrements the argument pointer
so it points to next argument.

exit 0

exit

Unconditionally terminates a script. The exit command may optionally take an integer argument, which is
returned to the shell as the exit status of the script. It is a good practice to end all but the simplest scripts with
an exit 0, indicating a successful run.

set

The set command changes the value of internal script variables. One use for this is to toggle option flags
which help determine the behavior of the script (see Section 3.27). Another application for it is to reset the
positional parameters that a script sees as the result of a command (set `command`). The script can then
parse the fields of the command output.

Example 3−40. Using set with positional parameters

#!/bin/bash

script "set−test"

Invoke this script with three command line parameters,
for example, "./set−test one two three".

echo
echo "Positional parameters before set \`uname −a\` :"
echo "Command−line argument #1 = $1"
echo "Command−line argument #2 = $2"
echo "Command−line argument #3 = $3"

echo

set `uname −a`
Sets the positional parameters to the output

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 59

of the command `uname −a`

echo "Positional parameters after set \`uname −a\` :"
$1, $2, $3, etc. reinitialized to result of `uname −a`
echo "Field #1 of 'uname −a' = $1"
echo "Field #2 of 'uname −a' = $2"
echo "Field #3 of 'uname −a' = $3"
echo

exit 0

unset

The unset command deletes an internal script variable. It is a way of negating a previous set. Note that this
command does not affect positional parameters.

export

The export command makes available variables to all child processes of the running script or shell.
Unfortunately, there is no way to export variables back to the parent process, to the process that called or
invoked the script or shell. One important use of export command is in startup files, to initialize and make
accessible environmental variables to subsequent user processes (see Section 3.23).

Note: It is possible to initialize and export variables in the same operation, as in export
var1=xxx.

readonly

Same as declare −r, sets a variable as read−only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.

basename

Strips the path information from a file name, printing only the file name. The construction basename
$0 lets the script know its name, that is, the name it was invoked by. This can be used for "usage" messages
if, for example a script is called with missing arguments:

echo "Usage: `basename $0` arg1 arg2 ... argn"

dirname

Strips the basename from a file name, printing only the path information.

Note: basename and dirname can operate on any arbitrary string. The filename given as an
argument does not need to refer to an existing file.

Example 3−41. basename and dirname

#!/bin/bash

a=/home/heraclius/daily−journal.txt

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 60

echo "Basename of /home/heraclius/daily−journal.txt = `basename $a`"
echo "Dirname of /home/heraclius/daily−journal.txt = `dirname $a`"

exit 0

read

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard. The
−a option lets read get array variables (see Example 3−90).

Example 3−42. Variable assignment, using read

#!/bin/bash

echo −n "Enter the value of variable 'var1': "
−n option to echo suppresses newline

read var1
Note no '$' in front of var1, since it is being set.

echo "var1 = $var1"

Note that a single 'read' statement can set multiple variables.

echo

echo −n "Enter the values of variables 'var2' and 'var3' (separated by a space or tab): "
read var2 var3
echo "var2 = $var2 var3 = $var3"
If you input only one value, the other variable(s) will remain unset (null).

exit 0

The read command may also "read" its variable value from a file redirected to stdin (see Section 3.13). If
the file contains more than one line, only the first line is assigned to the variable. If there is more than one
parameter to the read, then each variable gets assigned a successive whitespace delineated string. Caution!

read var1 <data−file
echo "var1 = $var1"
var1 set to the entire first line of the input file "data−file"

read var2 var3 <data−file
echo "var2 = $var2 var3 = $var3"
Note inconsistent behavior of "read" here.
1) Rewinds back to the beginning of input file.
2) Each variable is now set to a corresponding string, separated by whitespace,
rather than to an entire line of text.
3) The final variable gets the remainder of the line.
4) If there are more variables to be set than whitespace−terminated strings
on the first line of the file, then the excess variable remain unset.

true

A command that returns a successful (zero) exit status, but does nothing else.

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 61

Endless loop
while true
alias for :
do
 operation−1
 operation−2
 ...
 operation−n
 # Need a way to break out of loop.
done

false

A command that returns an unsuccessful exit status, but does nothing else.

Null loop
while false
do
 # The following code will not execute.
 operation−1
 operation−2
 ...
 operation−n
 # Nothing happens!
done

factor

Factor an integer into prime factors.

bash$ factor 27417
27417: 3 13 19 37

hash [cmds]

Record the path name of specified commands (in the shell hash table), so the shell or script will not need to
search the $PATH on subsequent calls to those commands. When hash is called with no arguments, it simply
lists the commands that have been hashed.

pwd

Print Working Directory. This gives the user's (or script's) current directory (see Example 3−43). The effect is
identical to reading the value of the builtin variable $PWD (see Section 3.7).

pushd, popd, dirs

This command set is a mechanism for bookmarking working directories, a means of moving back and forth
through directories in an orderly manner. A pushdown stack is used to keep track of directory names. Options
allow various manipulations of the directory stack.

pushd dir−name pushes the path dir−name onto the directory stack and simultaneously changes the
current working directory to dir−name

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 62

popd removes (pops) the top directory path name off the directory stack and simultaneously changes the
current working directory to that directory popped from the stack.

dirs lists the contents of the directory stack (counterpart to $DIRSTACK, see below). A successful pushd or
popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard−coding the directory name
changes can make good use of these commands. Note that the implicit $DIRSTACK array variable,
accessible from within a script, holds the contents of the directory stack.

Example 3−43. Changing the current working directory

#!/bin/bash

dir1=/usr/local
dir2=/var/spool

pushd $dir1
Will do an automatic 'dirs'
(list directory stack to stdout).
echo "Now in directory `pwd`."
Uses back−quoted 'pwd'.
Now, do some stuff in directory 'dir1'.
pushd $dir2
echo "Now in directory `pwd`."
Now, do some stuff in directory 'dir2'.
echo "The top entry in the DIRSTACK array is $DIRSTACK."
popd
echo "Now back in directory `pwd`."
Now, do some more stuff in directory 'dir1'.
popd
echo "Now back in original working directory `pwd`."

exit 0

source, . (dot command), dirs

This command, when invoked from the command line, executes a script. Within a script, a source
file−name loads the file file−name. This is the shell scripting equivalent of a C/C++
#include directive. It is useful in situations when multiple scripts use a common data file or function
library.

Example 3−44. "Including" a data file

#!/bin/bash

Load a data file.
. data−file
Same effect as "source data−file"

Note that the file "data−file", given below
must be present in working directory.

Now, reference some data from that file.

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 63

echo "variable1 (from data−file) = $variable1"
echo "variable3 (from data−file) = $variable3"

let "sum = $variable2 + $variable4"
echo "Sum of variable2 + variable4 (from data−file) = $sum"
echo "message1 (from data−file) is \"$message1\""
Note: escaped quotes

print_message This is the message−print function in the data−file.

exit 0

File data−file for Example 3−44, above. Must be present in same directory.

This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It may be loaded with a 'source' or '.' command by a shell script.

Let's initialize some variables.

variable1=22
variable2=474
variable3=5
variable4=97

message1="Hello, how are you?"
message2="Enough for now. Goodbye."

print_message ()
{
Echoes any message passed to it.

 if [−z $1]
 then
 return 1
 # Error, if argument missing.
 fi

 echo

 until [−z "$1"]
 do
 # Step through arguments passed to function.
 echo −n "$1"
 # Echo args one at a time, suppressing line feeds.
 echo −n " "
 # Insert spaces between words.
 shift
 # Next one.
 done

 echo

 return 0
}

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 64

3.9.1. Job Control Commands

ps

Lists currently executing jobs by owner and process id. This is usually invoked with ax options, and
may be piped to grep or sed to search for a specific process (see Example 3−51).

bash$ ps ax | grep sendmail
295 ? S 0:00 sendmail: accepting connections on port 25

wait

Stop script execution until all jobs running in background have terminated, or until the job number
specified as an option terminates. Sometimes used to prevent a script from exiting before a
background job finishes executing (this would create a dreaded orphan process).

Example 3−45. Waiting for a process to finish before proceeding

#!/bin/bash

if [−z $1]
then
 echo "Usage: `basename $0` find−string"
 exit 1
fi

echo "Updating 'locate' database..."
echo "This may take a while."
updatedb /usr &
Must be run as root.

wait
Don't run the rest of the script until 'updatedb' finished.
You want the the database updated before looking up the file name.

locate $1

Lacking the wait command, in the worse case scenario,
the script would exit while 'updatedb' was still running,
leaving it as an orphan process.

exit 0

suspend

This has the same effect as Control−Z, pausing a foreground job.

stop

This has the same effect as suspend, but for a background job.

disown

Remove job(s) from the shell's table of active jobs.

Advanced Bash−Scripting HOWTO

3.9.1. Job Control Commands 65

jobs

Lists the jobs running in the background, giving the job number. Not as useful as ps.

times

Gives statistics on the system time used in executing commands, in the following form:

0m0.020s 0m0.020s

This capability is of very limited value, since it is uncommon to profile and benchmark shell scripts.

kill

Forcibly terminate a process by sending it an appropriate terminate signal (see Example 3−69).

Note: kill −l lists all the "signals". (See Section 3.26 for more detail on signals).

command

The command directive disables aliases and functions. This leaves only shell builtins, system commands,
and commands and scripts accessible via $PATH.

Note: This is one of three shell directives that effect script command processing. The others
are builtin and enable, see below.

builtin

This disables both functions and commands in the $PATH, leaving only shell builtins accessible.

enable

This either enables or disables a shell builtin command. As an example, enable −n kill disables the shell
builtin kill, so that when Bash subsequently encounters kill, it invokes /bin/kill. The −a option lists all
the shell builtins, indicating whether or not they are enabled.

3.10. External Filters, Programs and Commands

This is a descriptive listing of standard UNIX commands useful in shell scripts. The power of scripts comes
from coupling system commands and shell directives with simple programming constructs.

3.10.1. Basic Commands

echo

prints (to stdout) an expression or variable (see Example 3−5).

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 66

echo Hello
echo $a

Normally, each echo command prints a terminal newline, but the −n option suppresses this.

ls

The basic file "list" command. It is all too easy to underestimate the power of this humble command.
For example, using the −R, recursive option, ls provides a tree−like listing of a directory structure.

Example 3−46. Using ls to create a table of contents for burning a CDR disk

#!/bin/bash

Script to automate burning a CDR.

Uses Joerg Schilling's "cdrecord" package
(http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html)

If this script invoked as an ordinary user, need to suid cdrecord
(chmod u+s /usr/bin/cdrecord, as root).

if [−z $1]
then
 IMAGE_DIRECTORY=/opt
Default directory, if not specified on command line.
else
 IMAGE_DIRECTORY=$1
fi

ls −lRF $IMAGE_DIRECTORY > $IMAGE_DIRECTORY/contents
The "l" option gives a "long" file listing.
The "R" option makes the listing recursive.
The "F" option marks the file types (directories suffixed by a /).
echo "Creating table of contents."

mkisofs −r −o cdimage.iso $IMAGE_DIRECTORY
echo "Creating ISO9660 file system image (cdimage.iso)."

cdrecord −v −isosize speed=2 dev=0,0 cdimage.iso
Change speed parameter to speed of your burner.
echo "Burning the disk."
echo "Please be patient, this will take a while."

exit 0

cat, tac

cat, an acronym for concatenate, lists a file to stdout. When combined with redirection (> or >>), it is
commonly used to concatenate files.

cat filename
 cat file.1 file.2 file.3 > file.123

The −n option to cat inserts consecutive numbers before each line of the target file(s).

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 67

tac, is the inverse of cat, listing a file backwards from its end.

rev

reverses each line of a file, and outputs to stdout. This is not the same effect as tac, as it preserves the order
of the lines, but flips each one around.

bash$ cat file1.txt
This is line 1.
 This is line 2.

bash$ tac file1.txt
This is line 2.
 This is line 1.

bash$ rev file1.txt
.1 enil si sihT
 .2 enil si sihT

cd

The familiar cd change directory command finds use in scripts where execution of a command requires being
in a specified directory.

(cd /source/directory && tar cf − .) | (cd /dest/directory && tar xvfp −)

[from the previously cited example by Alan Cox]

cp

This is the file copy command. cp file1 file2 copies file1 to file2, overwriting file2 if it
already exists (see Example 3−49).

mv

This is the file move command. It is equivalent to a combination of cp and rm. It may be used to move
multiple files to a directory. For some examples of using mv in a script, see Example 3−7 and Example A−2.

rm

Delete (remove) a file or files. The −f forces removal of even readonly files.

Warning

When used with the recursive flag −r, this command removes files all the way down the
directory tree.

rmdir

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 68

Remove directory. The directory must be empty of all files, including dotfiles, for this command to succeed.

mkdir

Make directory, creates a new directory. mkdir −p project/programs/December creates the
named directory. The −p option automatically creates any necessary parent directories.

chmod

Changes the attributes of an existing file (see Example 3−51).

chmod +x filename
Makes "filename" executable for all users.

chmod 644 filename
Makes "filename" readable/writable to owner, readable to
others
(octal mode).

chmod 1777 directory−name
Gives everyone read, write, and execute permission in directory,
however also sets the "sticky bit", which means that
only the directory owner can change files in the directory.

chattr

Change file attributes. This has the same effect as chmod above, but with a different invocation syntax.

ln

Creates links to pre−existings files. Most often used with the −s, symbolic or "soft" link flag. This permits
referencing the linked file by more than one name and is a superior alternative to aliasing (see Example 3−21).

ln −s oldfile newfile links the previously existing oldfile to the newly created link, newfile.

3.10.2. Complex Commands

find

exec COMMAND \;

Carries out COMMAND on each file that find scores a hit on. COMMAND terminates with \; (the ; is
escaped to make certain the shell passes it to find literally, which concludes the command sequence).
If COMMAND contains {}, then find substitutes the full path name of the selected file.

Example 3−47. Badname, eliminate file names in current directory containing bad characters and
white space.

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.10.2. Complex Commands 69

Delete filenames in current directory containing bad characters.

for filename in *
do
badname=`echo "$filename" | sed −n /[\+\{\;\"\\\=\?~\(\)\<\>\&*\|\$]/p`
Files containing those nasties: + { ; " \ = ? ~ () < > & * | $
rm $badname 2>/dev/null
So error messages deep−sixed.
done

Now, take care of files containing all manner of whitespace.
find . −name "* *" −exec rm −f {} \;
The path name of the file that "find" finds replaces the "{}".
The '\' ensures that the ';' is interpreted literally, as end of command.

exit 0

See the man page for find for more detail.

xargs

A filter for feeding arguments to a command, and also a tool for assembling the commands themselves. It
breaks a data stream into small enough chunks for filters and commands to process. Consider it as a powerful
replacement for backquotes. In situations where backquotes fail with a too many arguments error, substituting
xargs often works. Normally, xargs reads from 'stdin' or from a pipe, but it can also be given the output of a
file.

ls | xargs −p −l gzip gzips every file in current directory, one at a time, prompting before each
operation.

One of the more interesting xargs options is −n XX, which limits the number of arguments passed to XX.

ls | xargs −n 8 echo lists the files in the current directory in 8 columns.

Note: The default command for xargs is echo.

Example 3−48. Log file using xargs to monitor system log

#!/bin/bash

Generates a log file in current directory
from the tail end of /var/log messages.

Note: /var/log/messages must be readable by ordinary users
if invoked by same (#root chmod 755 /var/log/messages).

(date; uname −a) >>logfile
Time and machine name
echo −−− >>logfile
tail −5 /var/log/messages | xargs | fmt −s >>logfile
echo >>logfile
echo >>logfile

exit 0

Advanced Bash−Scripting HOWTO

3.10.2. Complex Commands 70

Example 3−49. copydir, copying files in current directory to another, using xargs

#!/bin/bash

Copy (verbose) all files in current directory
to directory specified on command line.

if [−z $1]
Exit if no argument given.
then
 echo "Usage: `basename $0` directory−to−copy−to"
 exit 1
fi

ls . | xargs −i −t cp ./{} $1
This is the exact equivalent of
cp * $1

exit 0

eval arg1, arg2, ...

Translates into commands the arguments in a list (useful for code generation within a script).

Example 3−50. Showing the effect of eval

#!/bin/bash

y=`eval ls −l`
echo $y

y=`eval df`
echo $y
Note that LF's not preserved

exit 0

Example 3−51. Forcing a log−off

#!/bin/bash

y=`eval ps ax | sed −n '/ppp/p' | awk '{ print $1 }'`
Finding the process number of 'ppp'

kill −9 $y
Killing it

Restore to previous state...

chmod 666 /dev/ttyS3
Doing a SIGKILL on ppp changes the permissions
on the serial port. Must be restored.

rm /var/lock/LCK..ttyS3
Remove the serial port lock file.

Advanced Bash−Scripting HOWTO

3.10.2. Complex Commands 71

exit 0

expr arg1 operation arg2 ...

All−purpose expression evaluator: Concatenates and evaluates the arguments according to the operation
given (arguments must be separated by spaces). Operations may be arithmetic, comparison, string, or logical.

expr 3 + 5

returns 8

expr 5 % 3

returns 2

y=`expr $y + 1`

incrementing variable, same as let y=y+1 and y=$(($y+1)), as discussed elsewhere

z=`expr substr $string28 $position $length`

Note that external programs, such as sed and Perl have far superior string parsing facilities, and it
might well be advisable to use them instead of the built−in bash ones.

Example 3−52. Using expr

#!/bin/bash

Demonstrating some of the uses of 'expr'
+++++++++++++++++++++++++++++++++++++++

echo

Arithmetic Operators

echo Arithmetic Operators
echo
a=`expr 5 + 3`
echo 5 + 3 = $a

a=`expr $a + 1`
echo
echo a + 1 = $a
echo \(incrementing a variable\)

a=`expr 5 % 3`
modulo
echo
echo 5 mod 3 = $a

echo
echo

Logical Operators

Advanced Bash−Scripting HOWTO

3.10.2. Complex Commands 72

echo Logical Operators
echo

a=3
echo a = $a
b=`expr $a \> 10`
echo 'b=`expr $a \> 10`, therefore...'
echo "If a > 10, b = 0 (false)"
echo b = $b

b=`expr $a \< 10`
echo "If a < 10, b = 1 (true)"
echo b = $b

echo
echo

Comparison Operators

echo Comparison Operators
echo
a=zipper
echo a is $a
if [`expr $a = snap`]
Force re−evaluation of variable 'a'
then
 echo "a is not zipper"
fi

echo
echo

String Operators

echo String Operators
echo

a=1234zipper43231
echo The string being operated upon is $a.

index: position of substring
b=`expr index $a 23`
echo Numerical position of first 23 in $a is $b.

substr: print substring, starting position & length specified
b=`expr substr $a 2 6`
echo Substring of $a, starting at position 2 and 6 chars long is $b.

length: length of string
b=`expr length $a`
echo Length of $a is $b.

'match' operations similarly to 'grep'
b=`expr match $a [0−9]*`
echo Number of digits at the beginning of $a is $b.
b=`expr match $a '\([0−9]*\)'`
echo The digits at the beginning of $a are $b.

echo

Advanced Bash−Scripting HOWTO

3.10.2. Complex Commands 73

exit 0

Note that : can substitute for match. b=`expr $a : [0−9]*` is an exact equivalent of b=`expr
match $a [0−9]*` in the above example.

let

The let command carries out arithmetic operations on variables. In many cases, it functions as a less complex
version of expr.

Example 3−53. Letting let do some arithmetic.

#!/bin/bash

echo

let a=11
Same as 'a=11'
let a=a+5
Equivalent to let "a = a + 5"
(double quotes makes it more readable)
echo "a = $a"
let "a <<= 3"
Equivalent of let "a = a << 3"
echo "a left−shifted 3 places = $a"

let "a /= 4"
Equivalent to let "a = a / 4"
echo $a
let "a −= 5"
Equivalent to let "a = a − 5"
echo $a
let "a = a * 10"
echo $a
let "a %= 8"
echo $a

exit 0

3.10.3. Time / Date Commands

date

Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in its
formatting and parsing options.

Example 3−54. Using date

#!/bin/bash

#Using the 'date' command

Advanced Bash−Scripting HOWTO

3.10.3. Time / Date Commands 74

Needs a leading '+' to invoke formatting.

echo "The number of days since the year's beginning is `date +%j`."
%j gives day of year.

echo "The number of seconds elapsed since 01/01/1970 is `date +%s`."
%s yields number of seconds since "UNIX epoch" began,
but how is this useful?

prefix=temp
suffix=`eval date +%s`
filename=$prefix.$suffix
echo $filename
It's great for creating "unique" temp filenames,
even better than using $$.

Read the 'date' man page for more formatting options.

exit 0

time

Outputs very verbose timing statistics for executing a command.

time ls −l / gives something like this:

0.00user 0.01system 0:00.05elapsed 16%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (149major+27minor)pagefaults 0swaps

See also the very similar times command in the previous section.

touch

Utility for updating access/modification times of a file to current system time or other specified time, but also
useful for creating a new file. The command touch zzz will create a new file of zero length, named zzz,
assuming that zzz did not previously exist. Time−stamping empty files in this way is useful for storing date
information, for example in keeping track of modification times on a project. See Example 3−11.

at

The at job control command executes a given set of commands at a specified time. This is a user version of
cron.

at 2pm January 15 prompts for a set of commands to execute at that time. These commands may
include executable shell scripts.

Using either the −f option or input redirection (<), at reads a command list from a file. This file can include
shell scripts, though they should, of course, be noninteractive.

bash$ at 2:30 am Friday < at−jobs.list
job 2 at 2000−10−27 02:30

batch

Advanced Bash−Scripting HOWTO

3.10.3. Time / Date Commands 75

The batch job control command is similar to at, but it runs a command list when the system load drops
below .8. Like at, it can read commands from a file with the −f option.

cal

Prints a neatly formatted monthly calendar to stdout. Will do current year or a large range of past and
future years.

sleep

This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing. This
can be useful for timing or in processes running in the background, checking for a specific event every so
often (see Example 3−101).

sleep 3
Pauses 3 seconds.

3.10.4. Text Processing Commands

sort

File sorter, often used as a filter in a pipe. See the man page for options.

diff

Simple file comparison utility. This compares the target files line−by−line sequentially. In some
applications, such as comparing word dictionaries, it may be helpful to filter the files through
sort and uniq before piping them to diff. diff file−1 file−2 outputs the lines in the files that
differ, with carets showing which file each particular line belongs to. A common use for diff is
generating difference files to be used with patch (see below). The −e option outputs files suitable for
ed or ex scripts.

patch −p1 <patch−file
Takes all the changes listed in 'patch−file' and applies them
to the files referenced therein.

cd /usr/src
gzip −cd patchXX.gz | patch −p0
Upgrading kernel source using 'patch'.
From the Linux kernel docs "README",
by anonymous author (Alan Cox?).

There are available various fancy frontends for diff, such as spiff, wdiff, xdiff, and mgdiff.

comm

Versatile file comparison utility. The files must be sorted for this to be useful.

comm −options first−file second−file

comm file−1 file−2 outputs three columns:

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 76

column 1 = lines unique to file−1♦
column 2 = lines unique to file−2♦
column 3 = lines common to both.♦

The options allow suppressing output of one or more columns.

−1 suppresses column 1♦
−2 suppresses column 2♦
−3 suppresses column 3♦
−12 suppresses both columns 1 and 2, etc.♦

uniq

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.

cat list−1 list−2 list−3 | sort | uniq > final.list
Concatenates the list files,
sorts them,
removes duplicate lines,
and finally writes the result to an output file.

expand

A filter than converts tabs to spaces, often seen in a pipe.

cut

A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the
−d (delimiter) and −f (field specifier) options.

Using cut to obtain a listing of the mounted filesystems:

cat /etc/mtab | cut −d ' ' −f1,2

Using cut to list the OS and kernel version:

uname −a | cut −d" " −f1,3,11,12

cut −d ' ' −f2,3 filename is equivalent to awk '{ print $2, $3 }' filename

colrm

Column removal filter. This removes columns (characters) from a file and writes them, lacking the
range of specified columns, back to stdout. colrm 2 4 <filename removes the second through
fourth characters from each line of the text file filename.

Warning

If the file contains tabs or nonprintable characters, this may cause unpredictable behavior.

paste

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 77

Tool for merging together different files into a single, multi−column file. In combination with cut, useful for
creating system log files.

join

Consider this a more flexible version of paste. It works on exactly two files, but permits specifying which
fields to paste together, and in which order.

head

lists the first 10 lines of a file to stdout (see Example 3−66).

tail

lists the end of a file to stdout (the default is 10 lines, but this can be changed). Commonly used to keep track
of changes to a system logfile, using the −f option, which outputs lines appended to the file.

Example 3−48, Example 3−66, and Example 3−101 show tail in action.

grep

A multi−purpose file search tool that uses regular expressions. Originally a command/filter in the ancient
ed line editor, g/re/p, or global − regular expression − print.

grep pattern [file...]

search the files file, etc. for occurrences of pattern.

ls −l | grep '.txt' has the same effect as ls −l *.txt.

The −i option to grep causes a case−insensitive search.

Example 3−101 demonstrates how to use grep to search for a keyword in a system log file.

Example 3−55. Emulating "grep" in a script

#!/bin/bash

Very crude reimplementation of 'grep'.

if [−z $1] # Check for argument to script.
then
 echo "Usage: `basename $0` pattern"
 exit 1
fi

echo

for file in * # Traverse all files in $PWD.
do
 output=$(sed −n /"$1"/p $file) # Command substitution.

 if [! −z "$output"] # Variable $file quoted, otherwise error on multi−line output.

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 78

 then
 echo −n "$file: "
 echo $output
 fi

 echo
done

echo

exit 0

Exercises for reader:
−−−−−−−−−−−−−−−−−−−
1) Add newlines to output, if more than one match in any given file.
2) Add features.

Note: egrep is the same as grep −E. This uses a somewhat different, extended set of regular
expressions, which may make the search somewhat more flexible.

Note: fgrep is the same as grep −F. It does a literal string search (no regular expressions),
which generally speeds things up quite a bit.

Note: To search compressed files, use zgrep. It also works on non−compressed files, though
slower than plain grep. This is handy for searching through a mixed set of files, some of
them compressed, some not.

look

The command look works like grep, but does a lookup on a "dictionary", a sorted word list. By default,
look searches for a match in /usr/dict/words, but a different dictionary file may be specified.

Example 3−56. Checking words in a list for validity

#!/bin/bash
lookup:
Does a dictionary lookup on each word in a data file.

file=words.data # Data file to read words to test from.

echo

while ["$word" != end] # Last word in data file.
do
 read word # From data file, because of redirection at end of loop.
 look $word > /dev/null # Don't want to display lines in dictionary file.
 lookup=$? # Exit value of 'look'.

 if ["$lookup" −eq 0]
 then
 echo "\"$word\" is valid."
 else
 echo "\"$word\" is invalid."
 fi

done <$file # Redirects stdin to $file, so "reads" come from there.

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 79

echo

exit 0

sed, awk

Scripting languages especially suited for parsing text files and command output. May be embedded singly or
in combination in pipes and shell scripts.

sed

Non−interactive "stream editor", permits using many ex commands in batch mode. It finds many uses in shell
scripts. See Appendix B.

awk

Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns) in
structured text files. Its syntax is similar to C. See Section B.2.

groff, gs, TeX

Text markup languages. Used for preparing copy for printing or formatted video display.

Man pages use groff (see Example A−1). Ghostscript (gs) is the GPL version of Postscript. TeX is Donald
Knuth's elaborate typsetting system. It is often convenient to write a shell script encapsulating all the options
and arguments passed to one of these markup languages.

wc

wc gives a "word count" on a file or I/O stream:

$ wc /usr/doc/sed−3.02/README
20 127 838 /usr/doc/sed−3.02/README
[20 lines 127 words 838 characters]

wc −w gives only the word count.

wc −l gives only the line count.

wc −c gives only the character count.

wc −L gives only the length of the longest line.

Using wc to count how many .txt files are in current working directory:

$ ls *.txt | wc −l

See Example 3−66 and Example 3−75.

tr

character translation filter.

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 80

Caution

must use quoting and/or brackets, as appropriate.

tr "A−Z" "*" <filename changes all the uppercase letters in filename to asterisks (writes to
stdout).

tr −d [0−9] <filename deletes all digits from the file filename.

Example 3−57. toupper: Transforms a file to all uppercase.

#!/bin/bash

Changes a file to all uppercase.

if [−z $1]
Standard check whether command line arg is present.
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

tr [a−z] [A−Z] <$1

exit 0

Example 3−58. lowercase: Changes all filenames in working directory to lowercase.

#! /bin/bash
#
Changes every filename in working directory to all lowercase.
#
Inspired by a script of john dubois,
which was translated into into bash by Chet Ramey,
and considerably simplified by Mendel Cooper,
author of this HOWTO.

for filename in * #Traverse all files in directory.
do
 fname=`basename $filename`
 n=`echo $fname | tr A−Z a−z` #Change name to lowercase.
 if [$fname != $n] # Rename only files not already lowercase.
 then
 mv $fname $n
 fi
done

exit 0

Example 3−59. rot13: rot13, ultra−weak encryption.

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 81

Classic rot13 algorithm, encryption that might fool a 3−year old.
Usage: ./rot13.sh filename
or ./rot13.sh <filename
or ./rot13.sh and supply keyboard input (stdin)

cat "$@" | tr 'a−zA−Z' 'n−za−mN−ZA−M' # "a" goes to "n", "b" to "o", etc.
The 'cat "$@"' construction permits getting input either from stdin or from a file.

exit 0

fold

A filter that wraps inputted lines to a specified width (see Example 3−62).

fmt

Simple−minded file formatter, used as a filter in a pipe to "wrap" long lines of text output (see Example
3−48 and Example 3−62).

ptx

The ptx [targetfile] command outputs a permuted index (cross−reference list) of the targetfile. This may be
further filtered and formatted in a pipe, if necessary.

column

Column formatter. This filter transforms list−type text output into a "pretty−printed" table by inserting tabs at
appropriate places.

Example 3−60. Using column to format a directory listing

#!/bin/bash
This is a slight modification of the example file in the "column" man page.

(printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG−NAME\n" \
; ls −l | sed 1d) | column −t

The "sed 1d" in the pipe deletes the first line of output,
which would be "total N",
where "N" is the total number of files found by "ls −l".

The −t option to "column" pretty−prints a table.

exit 0

nl

Line numbering filter. nl filename lists filename to stdout, but inserts consecutive numbers at the
beginning of each non−blank line. If filename omitted, operates on stdin.

Example 3−61. nl: A self−numbering script.

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 82

#!/bin/bash

This file echoes itself twice to stdout with its lines numbered.

'nl' sees this as line 3 since it does not number blank lines.
'cat −n' sees the above line as number 5.

nl `basename $0`

echo; echo # Now, let's try it with 'cat −n'

cat −n `basename $0`
The difference is that 'cat −n' numbers the blank lines.

exit 0

pr

Print formatting filter. This will paginate a file (or stdout) into sections suitable for hard copy printing. A
particularly useful option is −d, forcing double−spacing.

Example 3−62. Formatted file listing.

#!/bin/bash

Get a file listing...

b=`ls /usr/local/bin`

...40 columns wide.
echo $b | fmt −w 40

Could also have been done by
echo $b | fold − −s −w 40

exit 0

printf

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language printf,
and the syntax is somewhat different.

printf format−string... parameter...

See the printf man page for in−depth coverage.

Caution

Older versions of bash may not support printf.

Example 3−63. printf in action

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.10.4. Text Processing Commands 83

printf demo

PI=3.14159265358979
DecimalConstant=31373
Message1="Greetings,"
Message2="Earthling."

echo

printf "Pi to 2 decimal places = %1.2f" $PI
echo
printf "Pi to 9 decimal places = %1.9f" $PI
Note correct round off.

printf "\n"
Prints a line feed, equivalent to 'echo'.

printf "Constant = \t%d\n" $DecimalConstant
Insert tab (\t)

printf "%s %s \n" $Message1 $Message2

echo

exit 0

3.10.5. File and Archiving Commands

tar

The standard UNIX archiving utility. Originally a Tape ARchiving program, from whence it derived
its name, it has developed into a general purpose package that can handle all manner of archiving
with all types of destination devices, ranging from tape drives to regular files to even stdout (see
Example 3−4). GNU tar has long since been patched to accept gzip compression options, such as tar
czvf archive−name.tar.gz *, which recursively archives and compresses all files (except "dotfiles")
in a directory tree.

cpio

This specialized archiving copy command is rarely used any more, having been supplanted by
tar/gzip. It still has its uses, such as moving a directory tree.

Example 3−64. Using cpio to move a directory tree

#!/bin/bash

Copying a directory tree using cpio.

if [$# −ne 2]
then
 echo Usage: `basename $0` source destination
 exit 1
fi

Advanced Bash−Scripting HOWTO

3.10.5. File and Archiving Commands 84

source=$1
destination=$2

find "$source" −depth | cpio −admvp "$destination"

exit 0

gzip

The standard GNU/UNIX compression utility, replacing the inferior and proprietary compress. The
corresponding decompression command is gunzip, which is the equivalent of gzip −d.

The filter zcat decompresses a gzipped file to stdout, as possible input to a pipe or redirection. This is, in
effect, a cat command that works on compressed files (including files processed with the older
compress utility). See Example 3−14.

bzip2

An alternate compression utility, usually more efficient than gzip, especially on large files. The
corresponding decompression command is bunzip2.

sq

Yet another compression utility, a filter that works only on sorted ASCII word lists. It uses the standard
invocation syntax for a filter, sq < input−file > output−file. Fast, but not nearly as efficient as gzip. The
corresponding uncompression filter is unsq, invoked like sq.

Note: The output of sq may be piped to gzip for further compression.

shar

Shell archiving utility. The files in a shell archive are concatenated without compression, and the resultant
archive is essentially a shell script, complete with #!/bin/sh header, and containing all the necessary
unarchiving commands. Shar archives still show up in Internet newsgroups, but otherwise shar has been
pretty well replaced by tar/gzip. The unshar command unpacks shar archives.

split

Utility for splitting a file into smaller chunks. Usually used for splitting up large files in order to back them
up on floppies or preparatory to e−mailing or uploading them.

file

A utility for identifying file types. The command file file−name will return a file specification for
file−name, such as ascii text or data. It references the magic numbers found in
/usr/share/magic, /etc/magic, or /usr/lib/magic, depending on the Linux/UNIX distribution.

Example 3−65. stripping comments from C program files

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.10.5. File and Archiving Commands 85

Strips out the comments (/* comment */) in a C program.

NOARGS=1
WRONG_FILE_TYPE=2

if [$# = 0]
then
 echo "Usage: `basename $0` C−program−file" >&2 # Error message to stderr.
 exit $NOARGS
fi

Test for correct file type.
type=`eval file $1 | awk '{ print $2, $3, $4, $5 }'`
"file $1" echoes file type...
then awk removes the first field of this, the filename...
then the result is fed into the variable "type".
correct_type="ASCII C program text"

if ["$type" != "$correct_type"]
then
 echo
 echo "This script works on C program files only."
 echo
 exit $WRONG_FILE_TYPE
fi

Rather cryptic sed script:
#−−−−−−−−
sed '
/^\/*/d
/.*\/*/d
' $1
#−−−−−−−−
Easy to understand if you take several hours to learn sed fundamentals.

Need to add one more line to the sed script to deal with
case where line of code has a comment following it on same line.
This is left as a non−trivial exercise for the reader.

exit 0

uuencode

This utility encodes binary files into ASCII characters, making them suitable for transmission in the body of
an e−mail message or in a newsgroup posting.

uudecode

This reverses the encoding, decoding uuencoded files back into the original binaries.

Example 3−66. uudecoding encoded files

#!/bin/bash

lines=35

Advanced Bash−Scripting HOWTO

3.10.5. File and Archiving Commands 86

Allow 35 lines for the header (very generous).

for File in *
Test all the files in the current working directory...
do
 search1=`head −$lines $File | grep begin | wc −w`
 search2=`tail −$lines $File | grep end | wc −w`
 # Uuencoded files have a "begin" near the beginning, and an "end" near the end.
 if [$search1 −gt 0]
 then
 if [$search2 −gt 0]
 then
 echo "uudecoding − $File −"
 uudecode $File
 fi
 fi
done

exit 0

sum, cksum, md5sum

These are utilities for generating checksums. A checksum is a number mathematically calculated from the
contents of a file, for the purpose of checking its integrity. A script might refer to a list of checksums for
security purposes, such as ensuring that the contents of key system files have not been altered or corrupted.

strings

Use the strings command to find printable strings in a binary or data file. It will list sequences of printable
characters found in the target file. This might be handy for a quick 'n dirty examination of a core dump or for
looking at an unknown graphic image file (strings image−file | more might show something like
JFIF, which would identify the file as a jpeg graphic). In a script, you would probably parse the output of
strings with grep or sed.

more, less

Pagers that display a text file or stream to stdout, one screenful at a time. These may be used to filter the
output of a script.

3.10.6. Communications Commands

host

Searches for information about an Internet host by name or IP address, using DNS.

vrfy

Verify an Internet e−mail address.

nslookup

Do an Internet "name server lookup" on a host by IP address. This may be run either interactively or
noninteractively, i.e., from within a script.

Advanced Bash−Scripting HOWTO

3.10.6. Communications Commands 87

dig

Similar to nslookup, do an Internet "name server lookup" on a host. May be run either interactively
or noninteractively, i.e., from within a script.

traceroute

Trace the route taken by packets sent to a remote host. This command works within a LAN, WAN, or
over the Internet. The remote host may be specified by an IP address. The output of this command
may be filtered by grep or sed in a pipe.

rcp

"Remote copy", copies files between two different networked machines. Using rcp and similar
utilities with security implications in a shell script may not be advisable. Consider instead, using an
expect script.

sx, rx

The sx and rx command set serves to transfer files to and from a remote host using the
xmodem protocol. These are generally part of a communications package, such as minicom.

sz, rz

The sz and rz command set serves to transfer files to and from a remote host using the
zmodem protocol. Zmodem has certain advantages over xmodem, such as greater transmission rate
and resumption of interrupted file transfers. Like sx and rx, these are generally part of a
communications package.

uucp

UNIX to UNIX copy. This is a communications package for transferring files between UNIX servers.
A shell script is an effective way to handle a uucp command sequence.

Since the advent of the Internet and e−mail, uucp seems to have faded into obscurity, but it still
exists and remains perfectly workable in situations where an Internet connection is not available or
appropriate.

3.10.7. Miscellaneous Commands

jot, seq

These utilities emit a sequence of integers, with a user selected increment. This can be used to
advantage in a for loop.

Example 3−67. Using seq to generate loop arguments

#!/bin/bash

Advanced Bash−Scripting HOWTO

3.10.7. Miscellaneous Commands 88

for a in `seq 80`
Same as for a in 1 2 3 4 5 ... 80 (saves much typing!).
May also use 'jot' (if present on system).
do
 echo −n "$a "
done

echo

exit 0

which

which <command−xxx> gives the full path to "command−xxx". This is useful for finding out whether a
particular command or utility is installed on the system.

$bash which pgp

/usr/bin/pgp

script

This utility records (saves to a file) all the user keystrokes at the command line in a console or an xterm
window. This, in effect, create a record of a session.

lp

The lp and lpr commands send file(s) to the print queue, to be printed as hard copy. [4] These commands
trace the origin of their names to the line printers of another era.

bash$ cat file1.txt | lp

It is often useful to pipe the formatted output from pr to lp.

bash$ pr −options file1.txt | lp

Formatting packages, such as groff and Ghostscript may send their output directly to lp.

bash$ groff −Tascii file.tr | lp

bash$ gs −options | lp file.ps

Related commands are lpq, for viewing the print queue, and lprm, for removing jobs from the print queue.

tee

[UNIX borrows an idea here from the plumbing trade.]

This is a redirection operator, but with a difference. Like the plumber's tee, it permits "siponing off" the
output of a command or commands within a pipe, but without affecting the result. This is useful for printing
an ongoing process to a file or paper, perhaps to keep track of it for debugging purposes.

Advanced Bash−Scripting HOWTO

3.10.7. Miscellaneous Commands 89

 tee
 |−−−−−−> to file
 |
 ===============|===============
 command−−−>−−−−|−operator−−>−−−> result of command(s)
 ===============================

cat listfile* | sort | tee check.file | uniq > result.file

(The file check.file contains the concatenated sorted "listfiles", before the duplicate lines are removed by
uniq.)

clear

The clear command simply clears the text screen at the console or in an xterm. The prompt and cursor
reappear at the upper lefthand corner of the screen or xterm window. This command may be used either at the
command line or in a script. See Example 3−36.

yes

In its default behavior the yes command feeds a continuous string of the character y followed by a line feed
to stdout. A control−c terminates the run. A different output string may be specified, as in yes
different string, which would continually output different string to stdout. One might well
ask the purpose of this. From the command line or in a script, the output of yes can be redirected or piped into
a program expecting user input. In effect, this becomes a sort of poor man's version of expect.

mkfifo

This obscure command creates a named pipe, a temporary First−In−First−Out buffer for transferring data
between processes. Typically, one process writes to the FIFO, and the other reads from it. See Example A−7.

pathchk

This command checks the validity of a filename. If the filename exceeds the maximum allowable length (255
characters) or one or more of the directories in its path is not searchable, then an error message results.
Unfortunately, pathchk does not return a recognizable error code, and it is therefore pretty much useless in a
script.

dd

This is the somewhat obscure and much feared "data duplicator" command. It simply copies a file (or
stdin/stdout), but with conversions. Possible conversions are ASCII/EBCDIC, upper/lower case, swapping of
byte pairs between input and output, and skipping and/or truncating the head or tail of the input file. A dd
−−help lists the conversion and other options that this powerful utility takes.

The dd command can copy raw data and disk images to and from devices, such as floppies and tape drives. It
can even be used to create boot floppies.

dd if=kernel−image of=/dev/fd0H1440

One important use for dd is initializing temporary swap files (see Example 3−97).

Advanced Bash−Scripting HOWTO

3.10.7. Miscellaneous Commands 90

3.11. System and Administrative Commands

The startup and shutdown scripts in /etc/rc.d illustrate the uses (and usefulness) of these comands. These
are usually invoked by root and used for system maintenance or emergency filesystem repairs. Use with
caution, as some of these commands may damage your system if misused.

uname

Output system specifications (OS, kernel version, etc.) to stdout. Invoked with the −a option, gives
verbose system info (see Example 3−48).

bash$ uname −a
Linux localhost.localdomain 2.2.15−2.5.0 #1 Sat Feb 5 00:13:43 EST 2000 i686 unknown

arch

Show system architecture. Equivalent to uname −m.

bash$ arch
i686

bash$ uname −m
i686

id

The id command lists the real and effective user IDs and the group IDs of the current user. This is the
counterpart to the $UID, $EUID, and $GROUPS internal Bash variables (see Section 3.7).

bash$ id
uid=501(bozo) gid=501(bozo) groups=501(bozo),22(cdrom),80(cdwriter),81(audio)

bash$ echo $UID
501

who

Show all users logged on to the system.

whoami is a variant of who that lists only the current user.

w

Show all logged on users and the processes belonging to them. This is an extended version of who.
The output of w may be piped to grep to find a specific user and/or process.

bash$ w | grep startx
grendel tty1 − 4:22pm 6:41 4.47s 0.45s startx

users

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 91

Show all logged on users. This is the approximate equivalent of who −q.

groups

Lists the current user and the groups she belongs to. This corresponds to the $GROUPS internal
variable, but gives the group names, rather than the numbers.

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$ echo $GROUPS
501

hostname

Lists the system's host name, as recorded in /etc/hosts. This is a counterpart to the
$HOSTNAME internal variable.

bash$ hostname
localhost.localdomain

bash$ echo $HOSTNAME
localhost.localdomain

ulimit

Sets an upper limit on system resources. Usually invoked with the −f option, which sets a limit on
file size (ulimit −f 1000 limits files to 1 meg maximum). The −t option limits the coredump size
(ulimit −c 0 eliminates coredumps). Normally, the value of ulimit would be set in
/etc/profile and/or ~/.bash_profile (see Section 3.23).

uptime

Shows how long the system has been running, along with associated statistics.

bash$ uptime
10:28pm up 1:57, 3 users, load average: 0.17, 0.34, 0.27

env

Runs a program or script with certain environmental variables set or changed (without changing the
overall system environment). The [varname=xxx] permits changing the environmental variable
varname for the duration of the script. With no options specified, this command lists all the
environmental variable settings.

su

Runs a program or script as a substitute user. su rjones starts a shell as user rjones. A naked
su defaults to root. See Example A−7.

shopt

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 92

This command permits changing shell options on the fly (see Example 3−85). It often appears in the
Bash setup files, but also has its uses in scripts. Works with version 2 of Bash only.

shopt −s cdspell
Allows minor misspelling directory names with 'cd'
command.

lockfile

This utility is part of the procmail package (www.procmail.org). It creates a lock file, a semaphore
file that controls access to a file, device, or resource. The lock file serves as a flag that this particular
file, device, or resource is in use by a particular process ("busy"), and permitting only restricted
access (or no access) to other processes. Lock files are used in such applications as protecting system
mail folders from simultaneously being changed by multiple users, indicating that a modem port is
being accessed, and showing that an instance of Netscape is using its cache. Scripts may check for
the existence of a lock file created by a certain process to check if that process is running. Note that if
a script attempts create a lock file that already exists, the script will likely hang.

cron

Administrative program scheduler, performing such duties as cleaning up and deleting system log
files and updating the slocate database. This is the superuser version of at. It runs as a daemon
(background process) and executes scheduled entries from /etc/crontab.

chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative to /, the default
root directory. This changes the root directory to a different one (and also changes the working
directory to there). A chroot /opt would cause references to /usr/bin to be translated to
/opt/usr/bin, for example. This is useful for security purposes, for instance when the system
administrator wishes to restrict certain users, such as those telnetting in, to a secured portion of the
filesystem. Note that after a chroot, the execution path for system binaries is no longer valid.

The chroot command is also handy when running from an emergency boot floppy (chroot to
/dev/fd0), or as an option to lilo when recovering from a system crash. Other uses include
installation from a different filesystem (an rpm option). Invoke only as root, and use with caution.

umask

User file creation MASK. Limit the default file attributes for a particular user. All files created by
that user take on the attributes specified by umask. The (octal) value passed to umask defines the the
file permissions disabled. For example, umask 022 ensures that new files will have at most 755
permissions (777 NAND 022). [5] Of course, the user may later change the attributes of particular
files with chmod.The usual practice is to set the value of umask in /etc/profile and/or
~/.bash_profile (see Section 3.23).

ldd

Show shared lib dependencies for an executable file.

bash$ ldd /bin/ls

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 93

http://www.procmail.org

libc.so.6 => /lib/libc.so.6 (0x4000c000)
/lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x80000000)

logname

Show current user's login name (as found in /var/run/utmp). This is equivalent to whoami,
above.

bash$ logname
bozo

bash$ whoami
bozo

tty

Echoes the name of the current user's terminal. Note that each separate xterm window counts as a
different terminal.

bash$ tty
/dev/pts/1

stty

Shows and/or changes terminal settings.

Example 3−68. secret password: Turning off terminal echoing

#!/bin/bash

echo
echo −n "Enter password "
read passwd
echo "password is $passwd"
echo −n "If someone had been looking over your shoulder, "
echo "your password would have been compromised."

echo && echo # Two line−feeds in an "and list".

stty −echo # Turns off screen echo.

echo −n "Enter password again "
read passwd
echo
echo "password is $passwd"
echo

stty echo # Restores screen echo.

exit 0

wall

This is an acronym for "write all", i.e., sending a message to all users every terminal logged on in the
network. It is primarily a system administrator's tool, useful, for example, when warning everyone that the

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 94

system will shortly go down due to a problem (see Example 3−94).

wall System going down for maintenance in 5 minutes!

logger

Appends a user−generated message to the system log (/var/log/messages). You do not have to be root
to invoke logger.

logger Experiencing instability in network connection at 23:10, 05/21.
Now, do a 'tail /var/log/messages'.

dmesg

Lists all system bootup messages to stdout. Handy for debugging and ascertaining which device drivers were
installed and which system interrupts in use. The output of dmesg may, of course, be parsed with grep, sed,
or awk from within a script.

fuser

Identifies the processes (by pid) that are accessing a given file, set of files, or directory. May also be invoked
with the −k option, which kills those processes. This has interesting implications for system security,
especially in scripts preventing unauthorized users from accessing system services.

pidof

Identifies process id (pid) of a running job. Job control commands, such as kill and renice act on the pid of a
process, rather than its name. This is the counterpart of the $PPID internal variable (see Section 3.7).

Example 3−69. pidof helps kill a process

#!/bin/bash
kill−process

NOPROCESS=2

process=xxxyyyzzz # Use nonexistent process.
For demo purposes only...
... don't want to actually kill any actual process with this script.
If, for example, you wanted to use this script to logoff the Internet process=pppd

t=`pidof $process` # Find pid (process id) of $process.
The pid is needed by 'kill' (can't 'kill' by program name).

if [−z $t] # If process not present, 'pidof' returns null.
then
 echo "Process $process was not running."
 echo "Nothing killed."
 exit $NOPROCESS
fi

kill $t # May need 'kill −9' for stubborn process.

Need a check here to see if process allowed itself to be killed.

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 95

Perhaps another " t=`pidof $process` ".

exit 0

nice

Show or change the priority of a background job. Priorities run from 19 (lowest) to −20 (highest). Only
root may set the negative (higher) priorities. Related commands are renice, snice, and skill.

nohup

Keeps a command running even after user logs off. The command will run as a foreground process unless
followed by &. If you use nohup within a script, consider coupling it with a wait to avoid creating an orphan
or zombie process.

free

Shows memory and cache usage in tabular form. The output of this command lends itself to parsing, using
grep, awk or Perl.

bash$ free
 total used free shared buffers cached
 Mem: 30504 28624 1880 15820 1608 16376
 −/+ buffers/cache: 10640 19864
 Swap: 68540 3128 65412

sync

Forces an immediate write of all updated data from buffers to hard drive. While not strictly necessary, a
sync assures the sys admin or user that the data just changed will survive a sudden power failure. In the olden
days, a sync sync was a useful precautionary measure before a system reboot.

init

The init command is the parent of all processes. Called in the final step of a bootup, init determines the
runlevel of the system from /etc/inittab. Invoked by its alias telinit, and by root only.

telinit

Symlinked to init, this is a means of changing the system runlevel, usually done for system maintenance or
emergency filesystem repairs. Invoked only by root. This command can be dangerous − be certain you
understand it well before using!

runlevel

Shows the current and last runlevel, that is, whether the system is halted (runlevel 0), in single−user mode
(1), in multi−user mode (2 or 3), in X Windows (5), or rebooting (6).

halt, shutdown, reboot

Command set to shut the system down, usually just prior to a power down.

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 96

exec

This is actually a system call that replaces the current process with a specified command. It is mostly seen in
combination with find, to execute a command on the files found (see Example 3−47). When used as a
standalone in a script, it forces an exit from the script when the exec'ed command terminates. An exec is also
used to reassign file descriptors. exec <zzz−file replaces stdin with the file zzz−file (see Example
3−72).

Example 3−70. Effects of exec

#!/bin/bash

exec echo "Exiting $0."
Exit from script.

The following lines never execute.
echo "Still here?"

exit 0

ifconfig

Network interface configuration utility.

route

Show info about or make changes to the kernel routing table.

netstat

Show current network information and statistics, such as routing tables and active connections.

mknod

Creates block or character device files (may be necessary when installing new hardware on the system).

mount

Mount a filesystem, usually on an external device, such as a floppy or CDROM. The file
/etc/fstab provides a handy listing of available filesystems, including options, that may be automatically
or manually mounted. The file /etc/mtab shows the currently mounted filesystems (including the virtual
ones, such as /proc).

mount −t iso9660 /dev/cdrom /mnt/cdrom
Mounts CDROM
mount /mnt/cdrom
Shortcut, if /mnt/cdrom listed in /etc/fstab

umount

Unmount a currently mounted filesystem. Before physically removing a previously mounted floppy or
CDROM disk, the device must be umount'ed, else filesystem corruption may result.

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 97

umount /mnt/cdrom

lsmod

List installed kernel modules.

insmod

Force insertion of a kernel module. Must be invoked as root.

modprobe

Module loader that is normally invoked automatically in a startup script.

depmod

Creates module dependency file, usually invoked from startup script.

rdev

Get info about or make changes to root device, swap space, or video mode. The functionality of rdev has
generally been taken over by lilo, but rdev remains useful for setting up a ram disk. This is another dangerous
command, if misused.

Using our knowledge of administrative commands, let us examine a system script. One of the shortest and
simplest to understand scripts is killall, used to suspend running processes at system shutdown.

Example 3−71. killall, from /etc/rc.d/init.d

#!/bin/sh

−−> Comments added by the author of this HOWTO marked by "−−>".

−−> This is part of the 'rc' script package
−−> by Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>

−−> This particular script seems to be Red Hat specific
−−> (may not be present in other distributions).

Bring down all unneeded services that are still running (there shouldn't
be any, so this is just a sanity check)

for i in /var/lock/subsys/*; do
 # −−> Standard for/in loop, but since "do" is on same line,
 # −−> it is necessary to add ";".
 # Check if the script is there.
 [! −f $i] && continue
 # −−> This is a clever use of an "and list", equivalent to:
 # −−> if [! −f $i]; then continue

 # Get the subsystem name.
 subsys=${i#/var/lock/subsys/}
 # −−> Match variable name, which, in this case, is the file name.
 # −−> This is the exact equivalent of subsys=`basename $i`.

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 98

 # −−> It gets it from the lock file name, and since if there
 # −−> is a lock file, that's proof the process has been running.
 # −−> See the "lockfile" entry, above.

 # Bring the subsystem down.
 if [−f /etc/rc.d/init.d/$subsys.init]; then
 /etc/rc.d/init.d/$subsys.init stop
 else
 /etc/rc.d/init.d/$subsys stop
 # −−> Suspend running jobs and daemons
 # −−> using the 'stop' shell builtin.
 fi
done

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material there.

Exercise. In /etc/rc.d/init.d, analyze the halt script. It is a bit longer than killall, but similar in
concept. Make a copy of this script somewhere in your home directory and experiment with it (do not run it
as root). Do a simulated run with the −vn flags (sh −vn scriptname). Add extensive comments.
Change the "action" commands to "echos".

Now, look at some of the more complex scripts in /etc/rc.d/init.d. See if you can understand parts of
them. Follow the above procedure to analyze them. For some additional insight, you might also examine the
file sysvinitfiles in /usr/doc/initscripts−X.XX, which is part of the
"initscripts" documentation.

3.12. Backticks (`COMMAND`)

Command substitution

Commands within backticks generate command line text.

The output of commands within backticks can be used as arguments to another command or to load a
variable.

rm `cat filename`
"filename" contains a list of files to delete.

textfile_listing=`ls *.txt`
Variable contains names of all *.txt files in current working directory.
echo $textfile_listing
#
textfile_listing2=$(ls *.txt)
echo $textfile_listing
Also works.

Note: Using backticks for command substitution has been superseded by the
$(COMMAND) form.

Arithmetic expansion (commonly used with expr)

Advanced Bash−Scripting HOWTO

3.12. Backticks (`COMMAND`) 99

z=`expr $z + 3`

Note that this particular use of backticks has been superseded by double parentheses $((...)) or the very
convenient let construction.

z=$(($z+3))
$((EXPRESSION)) is arithmetic expansion.
Not to be confused with command substitution.

let z=z+3
let "z += 3" #If quotes, then spaces and special operators allowed.

All these are equivalent. You may use whichever one "rings your chimes".

3.13. I/O Redirection

There are always three default "files" open, stdin (the keyboard), stdout (the screen), and stderr (error
messages output to the screen). These, and any other open files, can be redirected. Redirection simply means
capturing the output of a file, command, program, script, or even code block within a script (see Example
3−2 and Example 3−3) and sending it as input to another file, command, program, or script.

Each open file gets assigned a file descriptor. [6] The file descriptors for stdin, stdout, and stderr are 0, 1, and
2, respectively. For opening additional files, there remain descriptors 3 to 9. It is sometimes useful to assign
one of these additional file descriptors to stdin, stdout, or stderr as a temporary duplicate link. [7] This
simplifies restoration to normal after complex redirection and reshuffling (see Example 3−72).

 >
 # Redirect stdout to a file.
 # Creates the file if not present, otherwise overwrites it.

 ls −lR > dir−tree.list
 # Creates a file containing a listing of the directory tree.

 >>
 # Redirect stdout to a file.
 # Creates the file if not present, otherwise appends to it.

 2> &1
 # Redirects stderr to stdout.
 # Has the effect of making visible error messages that might otherwise not be seen.

 i> &j
 # Redirects file descriptor i to j
 # All output of file pointed to by i gets sent to file pointed to by j

 <
 # Accept input from a file.
 # Companion command to ">", and often used in combination with it.
 grep search−word <filename

 |
 # Pipe.
 # General purpose process and command chaining tool.
 # Similar to ">", but more general in effect.
 # Useful for chaining commands, scripts, files, and programs together.

Advanced Bash−Scripting HOWTO

3.13. I/O Redirection 100

 cat *.txt | sort | uniq > result−file
 # Sorts the output of all the .txt files and deletes duplicate lines,
 # finally saves results to "result−file".

Note: Multiple instances of input and output redirection and/or pipes can be combined in a
single command line.

command < input−file > output−file

command1 | command2 | command3 > output−file

n<&−

close input file descriptor n

<&−

close stdin

n>&−

close output file descriptor n

>&−

close stdout

The exec <filename command redirects stdin to a file. From that point on, all stdin comes from that file,
rather than its normal source (usually keyboard input). This provides a method of reading a file line by line
and possibly parsing each line of input using sed and/or awk.

Example 3−72. Redirecting stdin using exec

#!/bin/bash
Redirecting stdin using 'exec'.

exec 6<&0 # Link file descriptor #6 with stdin.

exec < data−file # stdin replaced by file "data−file"

read a1 # Reads first line of file "data−file".
read a2 # Reads second line of file "data−file."

echo
echo "Following lines read from file."
echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
echo $a1
echo $a2

echo; echo; echo

exec 0<&6 # Now restore stdin from fd #6, where it had been saved.

Advanced Bash−Scripting HOWTO

3.13. I/O Redirection 101

echo −n "Enter data "
read b1 # Now "read" functions as expected, reading from normal stdin.
echo "Input read from stdin."
echo "−−−−−−−−−−−−−−−−−−−−−−"
echo "b1 = $b1"

echo

exit

Blocks of code, such as while, until, and for loops, even if/then test blocks can also incorporate redirection
of stdin. The < operator at the the end of the code block accomplishes this.

Example 3−73. Redirected while loop

#!/bin/bash

if [−z $1]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename="$1"
fi

while ["$name" != Smith] # Why is variable $name in quotes?
do
 read name # Reads from $Filename, rather than stdin.
 echo $name
done <$Filename # Redirects stdin to file $Filename.

exit 0

Example 3−74. Redirected until loop

#!/bin/bash
Same as previous example, but with "until" loop.

if [−z $1]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename="$1"
fi

while ["$name" != Smith]
until ["$name" = Smith] # Change != to =.
do
 read name # Reads from $Filename, rather than stdin.
 echo $name
done <$Filename # Redirects stdin to file $Filename.

Same results as with "while" loop in previous example.

exit 0

Example 3−75. Redirected for loop

Advanced Bash−Scripting HOWTO

3.13. I/O Redirection 102

#!/bin/bash

if [−z $1]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename="$1"
fi

line_count=`wc $Filename | awk '{ print $1 }'` # Number of lines in target file.
Very contrived and kludgy, nevertheless shows that
it's possible to redirect stdin within a "for" loop...
if you're clever enough.

for name in `seq $line_count` # Recall that "seq" prints sequence of numbers.
while ["$name" != Smith] −− more complicated than a "while" loop −−
do
 read name # Reads from $Filename, rather than stdin.
 echo $name
 if ["$name" = Smith] # Need all this extra baggage here.
 then
 break
 fi
done <$Filename # Redirects stdin to file $Filename.

exit 0

Example 3−76. Redirected if/then test

#!/bin/bash

if [−z $1]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename="$1"
fi

TRUE=1

if [$TRUE]
then
 read name
 echo $name
fi <$Filename
Reads only first line of file.
An if/then test has no way of iterating unless embedded in a loop.

exit 0

Clever use of I/O redirection permits parsing and stitching together snippets of files and command output.
One possible application of this might be generating report and log files.

Note: Here documents are a special case of I/O redirection. See Section 3.24.

Advanced Bash−Scripting HOWTO

3.13. I/O Redirection 103

3.14. Recess Time

This bizarre little intermission gives the reader a
chance to relax and maybe laugh a bit.

Fellow Linux user, greetings! You are reading
something which will bring you luck and good
fortune. Just e−mail a copy of this document to 10 of
your friends. Before you make the copies, send a
100−line Bash script to the first person on the list
given at the bottom of this letter. Then delete their
name and add yours to the bottom of the list.

Don't break the chain! Make the copies within 48
hours. Wilfred P. of Brooklyn failed to send out his
ten copies and woke the next morning to find his job
description changed to "COBOL programmer."
Howard L. of Newport News sent out his ten copies
and within a month had enough hardware to build a
100−node Beowulf cluster dedicated to playing xbill.
Amelia V. of Chicago laughed at this letter and broke
the chain. Shortly thereafter, a fire broke out in her
terminal and she now spends her days writing
documentation for MS Windows.

Don't break the chain! Send out your ten copies today!
Courtesy 'NIX "fortune cookies", with some

alterations and many apologies

3.15. Regular Expressions

In order to fully utilize the power of shell scripting, you need to master regular expressions.

3.15.1. A Brief Introduction to Regular Expressions

An expression is a set of characters that has an interpretation above and beyond its literal meaning. A quote
symbol ("), for example, may denote speech by a person, ditto, or a meta−meaning for the symbols that
follow. Regular expressions are sets of characters that UNIX endows with special features.

The main uses for regular expressions (REs) are text searches and string manipulation. An RE matches a
single character or a set of characters.

The asterisk * matches any number of characters, including zero.•
The dot . matches any one character, except a newline.•
The question mark ? matches zero or one of the previous RE. It is generally used for matching single
characters.

•

Advanced Bash−Scripting HOWTO

3.14. Recess Time 104

The plus + matches one or more of the previous RE. It serves a role similar to the *, but does
not match zero occurrences.

•

The caret ^ matches the beginning of a line, but sometimes, depending on context, negates the
meaning of a set of characters in an RE.

•

The dollar sign $ at the end of a an RE matches the end of a line.•
Brackets [...] enclose a set of characters to match in a single RE.•

[xyz] matches the characters x, y, or z.

[c−n] matches any of the characters in the range c to n.

[^b−d] matches all characters except those in the range b to d. This is an instance of ^ negating or
inverting the meaning of the following RE (taking on a role similar to ! in a different context).

The backslash \ escapes a special character, which means that character gets interpreted literally.•

A \$ reverts back to its literal meaning of "dollar sign", rather than its RE meaning of end−of−line.

Escaped "curly brackets" \{ \} indicate the number of occurrences of a preceding RE to match.•

It is necessary to escape the curly brackets since they have a different special character meaning
otherwise.

[0−9]\{5\} matches exactly five digits (characters in the range of 0 to 9).

Caution

Curly brackets are not available as an RE in awk.

"Sed & Awk", by Dougherty and Robbins (see Bibliography) gives a very complete and lucid treatment of
REs.

3.15.2. Using REs in scripts

Sed, awk, and Perl, used as filters in scripts, take REs as arguments when "sifting" or transforming files or
I/O streams. See Example A−4 and Example A−8 for illustrations of this.

3.16. Subshells

Running a shell script launches another instance of the command processor. Just as your commands are
interpreted at the command line prompt, similarly does a script batch process a list of commands in a file.
Each shell script running is, in effect, a subprocess of the parent shell, the one that gives you the prompt at
the console or in an xterm window.

A shell script can also launch subprocesses. These subshells let the script do parallel processing, in effect
executing multiple subtasks simultaneously.

Advanced Bash−Scripting HOWTO

3.15.2. Using REs in scripts 105

(command1; command2; command3; ...)•

A command list embedded between parentheses runs as a subshell.

Note: Variables in a subshell are not visible outside the block of code in the subshell. These
are, in effect, local variables.

Example 3−77. Variable scope in a subshell

#!/bin/bash

echo

outer_variable=Outer

(
inner_variable=Inner
echo "From subshell, \"inner_variable\" = $inner_variable"
echo "From subshell, \"outer\" = $outer_variable"
)

echo

if [−z $inner_variable]
then
 echo "inner_variable undefined in main body of shell"
else
 echo "inner_variable defined in main body of shell"
fi

echo "From main body of shell, \"inner_variable\" = $inner_variable"
$inner_variable will show as uninitialized because
variables defined in a subshell are "local variables".

echo

exit 0

Example 3−78. Running parallel processes in subshells

 (cat list1 list2 list3 | sort | uniq > list123)
 (cat list4 list5 list6 | sort | uniq > list456)
 # Merges and sorts both sets of lists simultaneously.

 wait #Don't execute the next command until subshells finish.

 diff list123 list456

Note: A command block between curly braces does not launch a subshell.

{ command1; command2; command3; ... }

Advanced Bash−Scripting HOWTO

3.15.2. Using REs in scripts 106

3.17. Restricted Shells

Running a script or portion of a script in restricted mode disables certain commands that would otherwise be
available. This is a security measure intended to limit the privileges of the script user and to minimize
possible damage from running the script.

Disabled commands in restricted shells

Using cd to change the working directory.•
Changing the values of the $PATH, $SHELL, $BASH_ENV, or $ENV environmental variables.•
Reading or changing the $SHELLOPTS, shell environmental options.•
Output redirection.•
Invoking commands containing one or more /'s.•
Invoking exec to substitute a different process for the shell.•
Various other commands that would enable monkeying with or attempting to subvert the script for an
unintended purpose.

•

Getting out of restricted mode within the script.•

Example 3−79. Running a script in restricted mode

#!/bin/bash
Starting the script with "#!/bin/bash −r" runs entire script in restricted mode.

echo

echo "Changing directory."
cd /usr/local
echo "Now in `pwd`"
echo "Coming back home."
cd
echo "Now in `pwd`"
echo

Everything up to here in normal, unrestricted mode.

set −r
set −−restricted has same effect.
echo "==> Now in restricted mode. <=="

echo
echo

echo "Attempting directory change in restricted mode."
cd ..
echo "Still in `pwd`"

echo
echo

echo "\$SHELL = $SHELL"
echo "Attempting to change shell in restricted mode."
SHELL="/bin/ash"
echo
echo "\$SHELL= $SHELL"

echo
echo

Advanced Bash−Scripting HOWTO

3.17. Restricted Shells 107

echo "Attempting to redirect output in restricted mode."
ls −l /usr/bin > bin.files
Try to list attempted file creation effort.
ls −l bin.files

echo

exit 0

3.18. Process Substitution

Process substitution is the counterpart to command substitution. Command substitution sets a
variable to the result of a command, as in dir_contents=`ls −al` or xref=$(grep word
datafile). Process substitution feeds the output of a process to another process (in other words, it sends
the results of a command to another command).

(command)>•

<(command)

These initiate process substitution. This uses a named pipe (temp file) to send the results of the
process within parentheses to another process.

Note: There are no spaces between the parentheses and the "<" or ">". Space there would
simply cause redirection from a subshell, rather than process substitution.

 cat <(ls −l)
 # Same as ls −l | cat

 sort −k 9 <(ls −l /bin) <(ls −l /usr/bin) <(ls −l /usr/X11R6/bin)
 # Lists all the files in the 3 main 'bin' directories, and sorts by filename.
 # Note that three (count 'em) distinct commands are fed to 'sort'.

3.19. Functions

Like "real" programming languages, bash has functions, though in a somewhat limited implementation. A
function is a subroutine, a code block that implements a set of operations, a "black box" that performs a
specified task. Whenever there is repetitive code, when a task repeats with only slight variations, then writing
a function should be investigated.

function function−name {
command...
}

or

function−name () {
command...

Advanced Bash−Scripting HOWTO

3.18. Process Substitution 108

}

This second form will cheer the hearts of C programmers.

The opening bracket in the function may optionally be placed on the second line, to more nearly resemble C
function syntax.

function−name ()
{
command...
}

Functions are called, triggered, simply by invoking their names.

Note that the function definition must precede the first call to it. There is no method of "declaring" the
function, as, for example, in C.

Example 3−80. Simple function

#!/bin/bash

funky ()
{
 echo This is a funky function.
 echo Now exiting funky function.
}

Note: function must precede call.

Now, call the function.

funky

exit 0

More complex functions may have arguments passed to them and return exit values to the script for further
processing.

function−name $arg1 $arg2

The function refers to the passed arguments by position (as if they were positional parameters), that is, $1,
$2, and so forth.

Example 3−81. Function Taking Parameters

#!/bin/bash

func2 () {
 if [−z $1]
 # Checks if any params.
 then
 echo "No parameters passed to function."
 return 0

Advanced Bash−Scripting HOWTO

3.18. Process Substitution 109

 else
 echo "Param #1 is $1."
 fi

 if [$2]
 then
 echo "Parameter #2 is $2."
 fi
}

func2
Called with no params
echo

func2 first
Called with one param
echo

func2 first second
Called with two params
echo

exit 0

Note: In contrast to certain other programming languages, shell scripts permit passing only
value parameters to functions. Variable names (which are actually pointers), if passed as
parameters to functions, will be treated as string literals and cannot be dereferenced.
Functions interpret their arguments literally.

exit status

Functions return a value, called an exit status. The exit status may be explicitly specified by a
return statement, otherwise it is the exit status of the last command in the function (0 if successful,
and a non−zero error code if not). This exit status may be used in the script by referencing it as $?.

return

Terminates a function. The return statement optionally takes an integer argument, which is returned
to the calling script as the "exit status" of the function, and this exit status is assigned to the variable
$?.

Example 3−82. Converting numbers to Roman numerals

#!/bin/bash

Arabic number to Roman numeral conversion
Range 0 − 200
It's crude, but it works.

Extending the range and otherwise improving the script
is left as an exercise for the reader.

Usage: roman number−to−convert

ARG_ERR=1
OUT_OF_RANGE=200

Advanced Bash−Scripting HOWTO

3.18. Process Substitution 110

if [−z $1]
then
 echo "Usage: `basename $0` number−to−convert"
 exit $ARG_ERR
fi

num=$1
if [$num −gt $OUT_OF_RANGE]
then
 echo "Out of range!"
 exit $OUT_OF_RANGE
fi

to_roman ()
{
number=$1
factor=$2
rchar=$3
let "remainder = number − factor"
while [$remainder −ge 0]
do
 echo −n $rchar
 let "number −= factor"
 let "remainder = number − factor"
done

return $number
}

Note: must declare function
before first call to it.

to_roman $num 100 C
num=$?
to_roman $num 90 LXXXX
num=$?
to_roman $num 50 L
num=$?
to_roman $num 40 XL
num=$?
to_roman $num 10 X
num=$?
to_roman $num 9 IX
num=$?
to_roman $num 5 V
num=$?
to_roman $num 4 IV
num=$?
to_roman $num 1 I

echo

exit 0

local variables

A variable declared as local is one that is visible only within the block of code in which it appears. In a shell
script, this means the variable has meaning only within its own function.

Advanced Bash−Scripting HOWTO

3.18. Process Substitution 111

Example 3−83. Local variable visibility

#!/bin/bash

func ()
{
 local a=23
 echo
 echo "a in function is $a"
 echo
}

func

Now, see if local 'a'
exists outside function.

echo "a outside function is $a"
echo
Nope, 'a' not visible globally.

exit 0

Local variables permit recursion (a recursive function is one that calls itself), but this practice usually
involves much computational overhead and is definitely not recommended in a shell script.

Example 3−84. Recursion, using a local variable

#!/bin/bash

factorial
−−−−−−−−−

Does bash permit recursion?
Well, yes, but...
You gotta have rocks in your head to try it.

MAX_ARG=5
WRONG_ARGS=1
RANGE_ERR=2

if [−z $1]
then
 echo "Usage: `basename $0` number"
 exit $WRONG_ARGS
fi

if [$1 −gt $MAX_ARG]
then
 echo "Out of range (5 is maximum)."
 # Let's get real now...
 # If you want greater range than this, rewrite it in a real programming language.
 exit $RANGE_ERR
fi

fact ()

Advanced Bash−Scripting HOWTO

3.18. Process Substitution 112

{
 local number=$1
 # Variable "number" must be declared as local otherwise this doesn't work.
 if [$number −eq 0]
 then
 factorial=1
 else
 let "decrnum = number − 1"
 fact $decrnum # Recursive function call.
 let "factorial = $number * $?"
 fi

 return $factorial
}

fact $1
echo "Factorial of $1 is $?."

exit 0

3.20. Aliases

A bash alias is essentially nothing more than a keyboard shortcut, an abbreviation, a means of avoiding
typing a long command sequence. If, for example, we include alias lm="ls −l | more" in the ~/.bashrc file
(see Section 3.23), then each lm typed at the command line will automatically be replaced by a ls −l | more.
This can save a great deal of typing at the command line and avoid having to remember complex
combinations of commands and options. Setting alias rm="rm −i" (interactive mode delete) may save a
good deal of grief, since it can prevent inadvertently losing important files.

In a script, aliases have very limited usefulness. It would be quite nice if aliases could assume some of the
functionality of the C preprocessor, such as macro expansion, but unfortunately Bash does not expand
arguments within the alias body. Moreover, a script fails to expand an alias itself within "compound
constructs", such as if/then statements, loops, and functions. Almost invariably, whatever we would like an
alias to do could be accomplished much more effectively with a function.

Example 3−85. Aliases within a script

#!/bin/bash2

shopt −s expand_aliases
Must set this option, else script will not expand aliases.

First, some fun.
alias Jesse_James='echo "\"Alias Jesse James\" was a 1959 comedy starring Bob Hope."'
Jesse_James

echo; echo; echo;

alias ll="ls −l"
May use either single (') or double (") quotes to define an alias.

echo "Trying aliased \"ll\":"
ll /usr/X11R6/bin/mk* # Alias works.

Advanced Bash−Scripting HOWTO

3.20. Aliases 113

echo

directory=/usr/X11R6/bin/
prefix=mk* # See if wild−card causes problems.
echo "Variables \"directory\" + \"prefix\" = $directory$prefix"
echo

alias lll="ls −l $directory$prefix"

echo "Trying aliased \"lll\":"
lll # Long listing of all files in /usr/X11R6/bin stating with mk.
Alias handles concatenated variables, including wild−card o.k.

TRUE=1

echo

if [TRUE]
then
 alias rr="ls −l"
 echo "Trying aliased \"rr\" within if/then statement:"
 rr /usr/X11R6/bin/mk* # Error message results!
 # Aliases not expanded within compound statements.
 echo "However, previously expanded alias still recognized:"
 ll /usr/X11R6/bin/mk*
fi

echo

count=0
while [$count −lt 3]
do
 alias rrr="ls −l"
 echo "Trying aliased \"rrr\" within \"while\" loop:"
 rrr /usr/X11R6/bin/mk* # Alias will not expand here either.
 let count+=1
done

exit 0

Note: The unalias command removes a previously set alias.

Example 3−86. unalias: Setting and unsetting an alias

#!/bin/bash

shopt −s expand_aliases # Enables alias expansion.

alias llm='ls −al | more'
llm

echo

unalias llm # Unset alias.

Advanced Bash−Scripting HOWTO

3.20. Aliases 114

llm
Error message results, since 'llm' no longer recognized.

exit 0

bash$./unalias.sh
total 6
drwxrwxr−x 2 bozo bozo 3072 Feb 6 14:04 .
drwxr−xr−x 40 bozo bozo 2048 Feb 6 14:04 ..
−rwxr−xr−x 1 bozo bozo 199 Feb 6 14:04 unalias.sh

./unalias.sh: llm: command not found

3.21. List Constructs

The "and list" and "or list" constructs provide a means of processing a number of commands consecutively.
These can effectively replace complex nested if/then or even case statements. Note that the exit status of an
"and list" or an "or list" is the exit status of the last command executed.

and list

command−1 && command−2 && command−3 && ... command−n

Each command executes in turn provided that the previous command has given a return value of true. At the
first false return, the command chain terminates (the first command returning false is the last one to execute).

Example 3−87. Using an "and list" to test for command−line arguments

#!/bin/bash

"and list"

if [! −z $1] && echo "Argument #1 = $1" && [! −z $2] && echo "Argument #2 = $2"
then
 echo "At least 2 arguments to script."
 # All the chained commands return true.
else
 echo "Less than 2 arguments to script."
 # At least one of the chained commands returns false.
fi
Note that "if [! −z $1]" works, but its supposed equivalent,
"if [−n $1]" does not. This is a bug, not a feature.

This accomplishes the same thing, coded using "pure" if/then statements.
if [! −z $1]
then
 echo "Argument #1 = $1"
fi
if [! −z $2]
then
 echo "Argument #2 = $2"
 echo "At least 2 arguments to script."
else
 echo "Less than 2 arguments to script."
fi

Advanced Bash−Scripting HOWTO

3.21. List Constructs 115

It's longer and less elegant than using an "and list".

exit 0

or list

command−1 || command−2 || command−3 || ... command−n

Each command executes in turn for as long as the previous command returns false. At the first true return, the
command chain terminates (the first command returning true is the last one to execute). This is obviously the
inverse of the "and list".

Example 3−88. Using "or lists" in combination with an "and list"

#!/bin/bash

"Delete", not−so−cunning file deletion utility.
Usage: delete filename

if [−z $1]
then
 file=nothing
else
 file=$1
fi
Fetch file name (or "nothing") for deletion message.

[! −f $1] && echo "$1 not found. Can't delete a nonexistent file."
AND LIST, to give error message if file not present.

[! −f $1] || (rm −f $1; echo "$file deleted.")
OR LIST, to delete file if present.
(command1 ; command2) is, in effect, an AND LIST variant.

Note logic inversion above.
AND LIST executes on true, OR LIST on false.

[! −z $1] || echo "Usage: `basename $0` filename"
OR LIST, to give error message if no command line arg (file name).

exit 0

Clever combinations of "and" and "or" lists are possible, but the logic may easily become convoluted and
require extensive debugging.

3.22. Arrays

Newer versions of bash support one−dimensional arrays. Arrays may be declared with the
variable[xx] notation or explicitly by a declare −a variable statement. To dereference (find the
contents of) an array variable, use curly bracket notation, that is, ${variable[xx]}.

Example 3−89. Simple array usage

Advanced Bash−Scripting HOWTO

3.22. Arrays 116

#!/bin/bash

area[11]=23
area[13]=37
area[51]=UFOs

Note that array members need not be consecutive
or contiguous.

Some members of the array can be left uninitialized.
Gaps in the array are o.k.

echo −n "area[11] = "
echo ${area[11]}
echo −n "area[13] = "
echo ${area[13]}
Note that {curly brackets} needed
echo "Contents of area[51] are ${area[51]}."

Contents of uninitialized array variable print blank.
echo −n "area[43] = "
echo ${area[43]}
echo "(area[43] unassigned)"

echo

Sum of two array variables assigned to third
area[5]=`expr ${area[11]} + ${area[13]}`
echo "area[5] = area[11] + area[13]"
echo −n "area[5] = "
echo ${area[5]}

area[6]=`expr ${area[11]} + ${area[51]}`
echo "area[6] = area[11] + area[51]"
echo −n "area[6] = "
echo ${area[6]}
This doesn't work because
adding an integer to a string is not permitted.

echo
echo
echo

−−−
Another array, "area2".
Another way of assigning array variables...
array_name=(XXX YYY ZZZ ...)

area2=(zero one two three four)

echo −n "area2[0] = "
echo ${area2[0]}
Aha, zero−based indexing (first element of array is [0], not [1]).

echo −n "area2[1] = "
echo ${area2[1]} # [1] is second element of array.
−−−

echo

Advanced Bash−Scripting HOWTO

3.22. Arrays 117

echo
echo

−−−
Yet another array, "area3".
Yet another way of assigning array variables...
array_name=([xx]=XXX [yy]=YYY ...)

area3=([17]=seventeen [24]=twenty−four)

echo −n "area3[17] = "
echo ${area3[17]}

echo −n "area3[24] = "
echo ${area3[24]}
−−−

exit 0

Arrays variables have a syntax all their own, and even standard bash operators have special options adapted
for array use.

Example 3−90. Some special properties of arrays

#!/bin/bash

declare −a colors
Permits declaring an array without specifying size.

echo "Enter your favorite colors (separated from each other by a space)."

read −a colors
Special option to 'read' command,
allowing it to assign elements in an array.

echo

 element_count=${#colors[@]} # Special syntax to extract number of elements in array.
element_count=${#colors[*]} works also.
index=0

List all the elements in the array.
while [$index −lt $element_count]
do
 echo ${colors[$index]}
 let "index = $index + 1"
done
Each array element listed on a separate line.
If this is not desired, use echo −n "${colors[$index]} "

echo

Again, list all the elements in the array, but using a more elegant method.
 echo ${colors[@]}
echo ${colors[*]} works also.

echo

Advanced Bash−Scripting HOWTO

3.22. Arrays 118

exit 0

As seen in the previous example, either ${array_name[@]} or ${array_name[*]} refers to all the
elements of the array. Similarly, to get a count of the number of elements in an array, use either
${#array_name[@]} or ${#array_name[*]}.

−−

Arrays permit deploying old familiar algorithms as shell scripts. Whether this is necessarily a good idea is left
to the reader to decide.

Example 3−91. An old friend: The Bubble Sort

#!/bin/bash

Bubble sort, of sorts.

Recall the algorithm for a bubble sort. In this particular version...

With each successive pass through the array to be sorted,
compare two adjacent elements, and swap them if out of order.
At the end of the first pass, the "heaviest" element has sunk to bottom.
At the end of the second pass, the next "heaviest" one has sunk next to bottom.
And so forth.
This means that each successive pass needs to traverse less of the array.
You will therefore notice a speeding up in the printing of the later passes.

exchange()
{
 # Swaps two members of the array.
 local temp=${Countries[$1]} # Temporary storage for element getting swapped out.
 Countries[$1]=${Countries[$2]}
 Countries[$2]=$temp

 return
}

declare −a Countries # Declare array, optional here since it's initialized below.

Countries=(Netherlands Ukraine Zair Turkey Russia Yemen Syria Brazil Argentina Nicaragua Japan Mexico Venezuela Greece England Israel Peru Canada Oman Denmark Wales France Kashmir Qatar Liechtenstein Hungary)
Couldn't think of one starting with X (darn).

clear # Clear the screen to start with.

echo "0: ${Countries[*]}" # List entire array at pass 0.

number_of_elements=${#Countries[@]}
let "comparisons = $number_of_elements − 1"

count=1 # Pass number.

while [$comparisons −gt 0] # Beginning of outer loop
do

 index=0 # Reset index to start of array after each pass.

Advanced Bash−Scripting HOWTO

3.22. Arrays 119

 while [$index −lt $comparisons] # Beginning of inner loop
 do
 if [${Countries[$index]} \> ${Countries[`expr $index + 1`]}]
 # If out of order...
 # Recalling that \> is ASCII comparison operator.
 then
 exchange $index `expr $index + 1` # Swap.
 fi
 let "index += 1"
 done # End of inner loop

let "comparisons −= 1"
Since "heaviest" element bubbles to bottom, we need do one less comparison each pass.

echo
echo "$count: ${Countries[@]}"
Print resultant array at end of each pass.
echo
let "count += 1" # Increment pass count.

done # End of outer loop

All done.

exit 0

−−

Arrays enable implementing a shell script version of the Sieve of Erastosthenes. Of course, a
resource−intensive application of this nature should really be written in a compiled language, such as C. It
runs excruciatingly slowly as a script.

Example 3−92. Complex array application: Sieve of Erastosthenes

#!/bin/bash

sieve.sh
Sieve of Erastosthenes
Ancient algorithm for finding prime numbers.

This runs a couple of orders of magnitude
slower than equivalent C program.

LOWER_LIMIT=1
Starting with 1.
UPPER_LIMIT=1000
Up to 1000.
(You may set this higher...
if you have time on your hands.)

PRIME=1
NON_PRIME=0

let SPLIT=UPPER_LIMIT/2
Optimization:
Need to test numbers only
halfway to upper limit.

Advanced Bash−Scripting HOWTO

3.22. Arrays 120

declare −a Primes
Primes[] is an array.

initialize ()
{
Initialize the array.

i=$LOWER_LIMIT
until [$i −gt $UPPER_LIMIT]
do
 Primes[i]=$PRIME
 let "i += 1"
done
Assume all array members guilty (prime)
until proven innocent.
}

print_primes ()
{
Print out the members of the Primes[] array
tagged as prime.

i=$LOWER_LIMIT

until [$i −gt $UPPER_LIMIT]
do

 if [${Primes[i]} −eq $PRIME]
 then
 printf "%8d" $i
 # 8 spaces per number
 # gives nice, even columns.
 fi

 let "i += 1"

done

}

sift ()
{
Sift out the non−primes.

let i=$LOWER_LIMIT+1
We know 1 is prime, so
let's start with 2.

until [$i −gt $UPPER_LIMIT]
do

if [${Primes[i]} −eq $PRIME]
Don't bother sieving numbers
already sieved (tagged as non−prime).
then

 t=$i

 while [$t −le $UPPER_LIMIT]
 do

Advanced Bash−Scripting HOWTO

3.22. Arrays 121

 let "t += $i "
 Primes[t]=$NON_PRIME
 # Tag as non−prime
 # all multiples.
 done

fi

 let "i += 1"
done

}

Invoke the functions sequentially.
initialize
sift
print_primes
echo
This is what they call structured programming.

exit 0

3.23. Files

/etc/profile•

systemwide defaults, mostly setting the environment (all shells, not just Bash)

/etc/bashrc•

systemwide functions and and aliases for Bash

$HOME/.bash_profile•

user−specific Bash environmental default settings, found in each user's home directory (the local
counterpart to /etc/profile)

$HOME/.bashrc•

user−specific Bash init file, found in each user's home directory (the local counterpart to
/etc/bashrc). Only interactive shells and user scripts read this file. See Appendix C for a sample
.bashrc file.

These are the startup files for Bash. They contain the aliases (see Section 3.20) and environmental variables
made available to Bash running as a user shell and to all Bash scripts invoked after system initialization.

3.24. Here Documents

A here document uses a special form of I/O redirection (see Section 3.13) to feed a command script to an
interactive program, such as ftp, telnet, or ex. Typically, the script consists of a command list to the program,

Advanced Bash−Scripting HOWTO

3.23. Files 122

delineated by a limit string. The special symbol << precedes the limit string. This has the effect of redirecting
the output of a file into the program, similar to

interactive−program
 < command−file

where command−file contains

command #1
command #2
...

The "here document" alternative looks like this:

#!/bin/bash
interactive−program <<LimitString
command #1
command #2
...
LimitString

Choose a limit string sufficiently unusual that it will not occur anywhere in the command list and confuse
matters.

Note that "here documents" may sometimes be used to good effect with non−interactive utilities and
commands.

Example 3−93. dummyfile: Creates a 2−line dummy file

#!/bin/bash

Non−interactive use of 'vi' to edit a file.
Emulates 'sed'.

if [−z $1]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

TARGETFILE=$1

vi $TARGETFILE <<x23LimitStringx23
i
This is line 1 of the example file.
This is line 2 of the example file.
^[
ZZ
x23LimitStringx23

Note that ^[above is a literal escape
typed by Control−V Escape

exit 0

Advanced Bash−Scripting HOWTO

3.23. Files 123

The above script could just as effectively have been implemented with ex, rather than vi. Here documents
containing a list of ex commands are common enough to form their own category, known as ex scripts.

Example 3−94. broadcast: Sends message to everyone logged in

#!/bin/bash

wall <<zzz23EndOfMessagezzz23
Dees ees a message frrom Central Headquarters:
Do not keel moose!
Other message text goes here.
Note: Comment lines printed by 'wall'.
zzz23EndOfMessagezzz23

Could have been done more efficiently by
wall <message−file

exit 0

Example 3−95. Multi−line message using cat

#!/bin/bash

'echo' is fine for printing single line messages,
but somewhat problematic for for message blocks.
A 'cat' here document overcomes this limitation.

cat <<End−of−message
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End−of−message

exit 0

Example 3−96. upload: Uploads a file pair to "Sunsite" incoming directory

#!/bin/bash

upload
upload file pair (filename.lsm, filename.tar.gz)
to incoming directory at Sunsite

if [−z $1]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

Filename=`basename $1`

Advanced Bash−Scripting HOWTO

3.23. Files 124

Strips pathname out of file name

Server="metalab.unc.edu"
Directory="/incoming/Linux"
These need not be hard−coded into script,
may instead be changed to command line argument.

Password="your.e−mail.address"
Change above to suit.

ftp −n $Server <<End−Of−Session
−n option disables auto−logon

user anonymous $Password
binary
bell
Ring 'bell' after each file transfer
cd $Directory
put $Filename.lsm
put $Filename.tar.gz
bye
End−Of−Session

exit 0

Note: Some utilities will not work in a "here document". The pagers, more and less are
among these.

For those tasks too complex for a "here document", consider using the expect scripting
language, which is specifically tailored for feeding input into non−interactive programs.

3.25. Of Zeros and Nulls

Uses of /dev/null

Think of /dev/null as a "black hole". It is the nearest equivalent to a write−only file. Everything
written to it disappears forever. Attempts to read or output from it result in nothing. Nevertheless,
/dev/null can be quite useful from both the command line and in scripts.

Suppressing stdout or stderr (from Example 3−98):

rm $badname 2>/dev/null
So error messages [stderr] deep−sixed.

Deleting contents of a file, but preserving the file itself, with all attendant permissions (from Example
2−1 and Example 2−2):

cat /dev/null > /var/log/messages
cat /dev/null > /var/log/wtmp

Automatically emptying the contents of a log file (especially good for dealing with those nasty
"cookies" sent by Web commercial sites):

rm −f ~/.netscape/cookies

Advanced Bash−Scripting HOWTO

3.25. Of Zeros and Nulls 125

ln −s /dev/null ~/.netscape/cookies
All cookies now get sent to a black hole, rather than saved to disk.

Uses of /dev/zero

Like /dev/null, /dev/zero is a pseudo file, but it actually contains nulls (numerical zeros, not
the ASCII kind). Output written to it disappears, and it is fairly difficult to actually read the nulls in
/dev/zero, though it can be done with od or a hex editor. The chief use for /dev/zero is in
creating an initialized dummy file of specified length intended as a temporary swap file.

Example 3−97. Setting up a swapfile using /dev/zero

#!/bin/bash

Creating a swapfile.
This script must be run as root.

FILE=/swap
BLOCKSIZE=1024
PARAM_ERROR=33
SUCCESS=0

if [−z $1]
then
 echo "Usage: `basename $0` swapfile−size"
 # Must be at least 40 blocks.
 exit $PARAM_ERROR
fi

dd if=/dev/zero of=$FILE bs=$BLOCKSIZE count=$1

echo "Creating swapfile of size $1 blocks (KB)."

mkswap $FILE $1
swapon $FILE

echo "Swapfile activated."

exit $SUCCESS

3.26. Debugging

The Bash shell contains no debugger, nor even any debugging−specific commands or constructs. Syntax
errors or outright typos in the script generate cryptic error messages that are often of no help in debugging a
non−functional script.

Example 3−98. test23, a buggy script

#!/bin/bash

a=37

Advanced Bash−Scripting HOWTO

3.26. Debugging 126

if [$a −gt 27]
then
 echo $a
fi

exit 0

Output from script:

./test23: [37: command not found

What's wrong with the above script (hint: after the if)?

What if the script executes, but does not work as expected? This is the all too familiar logic error.

Example 3−99. test24, another buggy script

#!/bin/bash

This is supposed to delete all filenames
containing embedded spaces in current directory,
but doesn't. Why not?

badname=`ls | grep ' '`

echo "$badname"

rm "$badname"

exit 0

To find out what's wrong with Example 3−99, uncomment the echo "$badname" line. Echo statements
are useful for seeing whether what you expect is actually what you get.

Summarizing the symptoms of a buggy script,

It bombs with an error message syntax error, or1.
It runs, but does not work as expected (logic error)2.
It runs, works as expected, but has nasty side effects (logic bomb).3.

Tools for debugging non−working scripts include

echo statements at critical points in the script to trace the variables, and otherwise give a snapshot of
what is going on.

1.

using the tee filter to check processes or data flows at critical points.2.
setting option flags −n −v −x3.

sh −n scriptname checks for syntax errors without actually running the script. This is the
equivalent of inserting set −n or set −o noexec into the script. Note that certain types of
syntax errors can slip past this check.

sh −v scriptname echoes each command before executing it. This is the equivalent of inserting

Advanced Bash−Scripting HOWTO

3.26. Debugging 127

set −v or set −o verbose in the script.

sh −x scriptname echoes the result each command, but in an abbreviated manner. This is the
equivalent of inserting set −x or set −o xtrace in the script.

Inserting set −u or set −o nounset in the script runs it, but gives an unbound variable error
message at each attempt to use an undeclared variable.

trapping at exit4.

The exit command in a script actually sends a signal 0, terminating the process, that is, the script
itself. It is often useful to trap the exit, forcing a "printout" of variables, for example. The trap must
be the first command in the script.

trap

Specifies an action on receipt of a signal; also useful for debugging.

Note: A signal is simply a message sent to a process, either by the kernel or another process,
telling it to take some specified action (usually to terminate). For example, hitting a
Control−C, sends a user interrupt, an INT signal, to a running program.

trap 2 #ignore interrupts (no action specified)
trap 'echo "Control−C disabled."' 2

Example 3−100. Trapping at exit

#!/bin/bash

trap 'echo Variable Listing −−− a = $a b = $b' EXIT
EXIT is the name of the signal generated upon exit from a script.

a=39

b=36

exit 0
Note that commenting out the 'exit' command makes no difference,
since the script exits anyhow after running out of commands.

Example 3−101. Cleaning up after Control−C

#!/bin/bash

logon.sh
A quick 'n dirty script to check whether you are on−line yet.

TRUE=1
LOGFILE=/var/log/messages
Note that $LOGFILE must be readable (chmod 644 /var/log/messages).
TEMPFILE=temp.$$
Create a "unique" temp file name, using process id of the script.

Advanced Bash−Scripting HOWTO

3.26. Debugging 128

KEYWORD=address
At logon, the line "remote IP address xxx.xxx.xxx.xxx" appended to /var/log/messages.
ONLINE=22
USER_INTERRUPT=13

trap 'rm −f $TEMPFILE; exit $USER_INTERRUPT' TERM INT
Cleans up the temp file if script interrupted by control−c.

echo

while [$TRUE] #Endless loop.
do
 tail −1 $LOGFILE> $TEMPFILE
 # Saves last line of system log file as temp file.
 search=`grep $KEYWORD $TEMPFILE`
 # Checks for presence of the "IP address" phrase,
 # indicating a successful logon.

 if [! −z "$search"] # Quotes necessary because of possible spaces.
 then
 echo "On−line"
 rm −f $TEMPFILE # Clean up temp file.
 exit $ONLINE
 else
 echo −n "." # −n option to echo suppresses newline,
 # so you get continuous rows of dots.
 fi

 sleep 1
done

Note: if you change the KEYWORD variable to "Exit",
this script can be used while on−line to check for an unexpected logoff.

Exercise: Change the script, as per the above note,
and prettify it.

exit 0

Note: trap '' SIGNAL (two adjacent apostrophes) disables SIGNAL for the remainder
of the script. trap SIGNAL restores the functioning of SIGNAL once more. This is useful
to protect a critical portion of a script from an undesirable interrupt.

 trap '' 2 # Signal 2 is Control−C, now disabled.
 command
 command
 command
 trap 2 # Reenables Control−C

3.27. Options

Options are settings that change shell and/or script behavior.

The set command (see Section 3.9) enables options within a script. At the point in the script where you want
the options to take effect, use set −o option−name or, in short form, set −option−abbrev. These two forms

Advanced Bash−Scripting HOWTO

3.27. Options 129

are equivalent.

 #!/bin/bash

 set −o verbose
 # Echoes all commands before executing.

 #!/bin/bash

 set −v
 # Exact same effect as above.

Note: To disable an option within a script, use set +o option−name or set +option−abbrev.

 #!/bin/bash

 set −o verbose
 # Command echoing on.
 command
 ...
 command

 set +o verbose
 # Command echoing off.
 command
 # Not echoed.

 set −v
 # Command echoing on.
 command
 ...
 command

 set +v
 # Command echoing off.
 command

 exit 0

An alternate method of enabling options in a script is to specify them immediately following the #! script
header.

 #!/bin/bash −x
 #
 # Body of script follows.

It is also possible to enable script options from the command line. Some options that will not work with
set are available this way. Among these are −i, force script to run interactive.

bash −v script−name

bash −o verbose script−name

Advanced Bash−Scripting HOWTO

3.27. Options 130

The following is a listing of some useful options. They may be specified in either abbreviated form or by
complete name.

Table 3−1. bash options

Abbreviation Name Effect

−C noclobber Prevent overwriting of files by redirection (may be overridden by >|)

−D (none) List double−quoted strings prefixed by $, but do not execute commands in script

−a allexport Export all defined variables

−b notify Notify when jobs running in background terminate (not of much use in a script)

−c xxx (none) Read commands from xxx

−f noglob Filename expansion (globbing) disabled

−i interactiveScript runs in interactive mode

−p privileged Script runs as "suid" (caution!)

−r restricted Script runs in restricted mode (see Section 3.17).

−u nounset Attempt to use undefined variable outputs error message

−v verbose Print each command to stdout before executing it

−x xtrace Similar to −v, but expands commands

−e errexit Abort script at first error (when a command exits with non−zero status)

−n noexec Read commands in script, but do not execute them

−s stdin Read commands from stdin

−t (none) Exit after first command

− (none) End of options flag. All other arguments are positional parameters.

−− (none) Unset positional parameters. If arguments given (−−arg1arg2), positional
parameters set to arguments.

3.28. Gotchas

Turandot: Gli enigmi sono tre, la morte una!

Caleph: No, no! Gli enigmi sono tre, una la vita!
Puccini

Assigning reserved words or characters to variable names.

var1=case
Causes problems.
var2=23skidoo
Also problems. Variable names starting with a digit are reserved by the shell.

Advanced Bash−Scripting HOWTO

3.28. Gotchas 131

Try var2=_23skidoo. Starting variables with an underscore is o.k.
var3=xyz((!*
Causes even worse problems.

Using a hyphen or other reserved characters in a variable name.

var−1=23
Use 'var_1' instead.

Using white space inappropriately (in contrast to other programming languages bash can be finicky about
white space).

var1 = 23
'var1=23' is correct.
let c = $a − $b
'let c=$a−$b' or 'let "c = $a − $b"' are correct.
if [$a −le 5]
'if [$a −le 5]' is correct.

Using uninitialized variables (that is, using variables before a value is assigned to them). An uninitialized
variable has a value of "null", not zero.

Mixing up = and −eq in a test. Remember, = is for comparing literal variables and −eq is for numbers.

 if [$a = 273] # Wrong!
 if [$a −eq 273] # Correct.

Sometimes variables within "test" brackets ([]) need to be quoted (double quotes). Failure to do so may cause
unexpected behavior. See Example 3−13, Example 3−73, and Example 3−17.

Commands issued from a script may fail to execute because the script owner lacks execute permission for
them. If a user cannot invoke a command from the command line, then putting it into a script will likewise
fail. Try changing the attributes of the command in question, perhaps setting the suid bit (as root, of course).

Using bash version 2 functionality (see below) in a script headed with #!/bin/bash may cause a bailout
with error messages. Your system may still have an older version of bash as the default installation (echo
$BASH_VERSION). Try changing the header of the script to #!/bin/bash2.

A script may not export variables back to its parent process, the shell, or to the environment. Just as we
learned in biology, a child process can inherit from a parent, but not vice versa.

WHATEVER=/home/bozo
export WHATEVER
exit 0

bash$ echo $WHATEVER

bash$

Sure enough, back at the command prompt, $WHATEVER remains unset.

Making scripts "suid" is generally a bad idea, as it may compromise system security. Administrative scripts
should be run by root, not regular users.

Advanced Bash−Scripting HOWTO

3.28. Gotchas 132

Using shell scripts for CGI programming may be problematic. Shell script variables are not "typesafe", and
this can cause undesirable behavior as far as CGI is concerned. Moreover, it is difficult to
"hacker−proof" shell scripts.

3.29. Miscellany

Nobody really knows what the Bourne shell's
grammar is. Even examination of the source code is
little help.

Tom Duff

3.29.1. Interactive and non−interactive scripts

Let us define an interactive script as one that requires input from the user, usually with read statements (see
Example 3−42). "Real life" is actually a bit messier than that, and the formal specifications of an interactive
shell (according to Ramey & Fox) are complex and confusing. For now, assume an interactive script is one
that is bound to a tty, a script that a user has invoked from the console or an xterm.

Init and startup scripts are necessarily non−interactive, since they must run without human intervention.
Many administrative and system maintenance scripts are likewise non−interactive. Unvarying repetitive tasks
cry out for automation by non−interactive scripts.

Non−interactive scripts can run in the background, but interactive ones hang, waiting for input that never
comes. Handle that difficulty by having an expect script or embedded here document (see Section 3.24)
feed input to an interactive script running as a background job. In the simplest case, redirect a file to supply
input to a read statement (read variable <file). These particular workarounds make possible general purpose
scripts that run in either interactive or non−interactive modes.

If a script needs to test whether it is running in interactive mode, it is simply a matter of finding whether the
prompt variable, $PS1 is set. (If the user is being prompted for input, then the script needs to display a
prompt.)

if [−z $PS1] # no prompt?
then
 # non−interactive
 ...
else
 # interactive
 ...
fi

Alternatively, the script can test for the presence of i in the $− flag.

case $− in
i) # interactive script
;;
*) # non−interactive script
;;
(Thanks to "UNIX F.A.Q.", 1993)

Advanced Bash−Scripting HOWTO

3.29. Miscellany 133

Note: Scripts may be forced to run in interactive mode with the i option or with a #!/bin/bash
−i header. Be aware that this may cause erratic script behavior or show error messages where
no error is present.

3.29.2. Optimizations

Most shell scripts are quick 'n dirty solutions to non−complex problems. As such, optimizing them for speed
is not much of an issue. Consider the case, though, where a script carries out an important task, does it well,
but runs too slowly. Rewriting it in a compiled language may not be a palatable option. The simplest fix
would be to rewrite the parts of the script that slow it down. Is it possible to apply principles of code
optimization even to a lowly shell script?

Check the loops in the script. Time consumed by repetitive operations adds up quickly. Use the time and
times tools to profile computation−intensive commands. Consider rewriting time−critical code sections in C,
or even in assembler.

Try to minimize file i/o. Bash is not particularly efficient at handling files, so consider using more
appropriate tools for this within the script, such as awk or Perl.

Try to write your scripts in a structured, coherent form, so they can be reorganized and tightened up as
necessary. Some of the optimization techniques applicable to high−level languages may work for scripts, but
others, such as loop unrolling, are mostly irrelevant. Above all, use common sense.

3.29.3. Assorted Tips

To keep a record of which user scripts have run during a particular sesssion or over a number of
sessions, add the following lines to each script you want to keep track of. This will keep a continuing
file record of the script names and invocation times.

•

Append (>>) following to end of save file.
date>> $SAVE_FILE #Date and time.
echo $0>> $SAVE_FILE #Script name.
echo>> $SAVE_FILE #Blank line as separator.
Of course, SAVE_FILE defined and exported as environmental variable in ~/.bashrc
(something like ~/.scripts−run)

A shell script may act as an embedded command inside another shell script, a Tcl or wish script, or
even a Makefile. It can be invoked as as an external shell command in a C program using the
system() call, i.e., system("script_name");.

•

Put together a file of your favorite and most useful definitions and functions, then "include" this file
in scripts as necessary with either the "dot" (.) or source command (see Section 3.2).

•

It would be nice to be able to invoke X−Windows widgets from a shell script. There do, in fact, exist
a couple of packages that purport to do so, namely Xscript and Xmenu, but these seem to be pretty
much defunct. If you dream of a script that can create widgets, try wish (a Tcl derivative),
PerlTk (Perl with Tk extensions), or tksh (ksh with Tk extensions).

•

Advanced Bash−Scripting HOWTO

3.29.2. Optimizations 134

3.30. Bash, version 2

The current version of bash, the one you have running on your machine, is actually version 2. This update of
the classic bash scripting language added array variables, string and parameter expansion, and a better
method of indirect variable references, among other features.

Example 3−102. String expansion

#!/bin/bash

String expansion.
Introduced in version 2 of bash.

Strings of the form $'xxx'
have the standard escaped characters interpreted.

echo $'Ringing bell 3 times \a \a \a'
echo $'Three form feeds \f \f \f'
echo $'10 newlines \n\n\n\n\n\n\n\n\n\n'

exit 0

Example 3−103. Indirect variable references − the new way

#!/bin/bash

Indirect variable referencing.
This has a few of the attributes of references in C++.

a=letter_of_alphabet
letter_of_alphabet=z

Direct reference.
echo "a = $a"

Indirect reference.
echo "Now a = ${!a}"
The ${!variable} notation is greatly superior to the old "eval var1=\$$var2"

echo

t=table_cell_3
table_cell_3=24
echo "t = ${!t}"
table_cell_3=387
echo "Value of t changed to ${!t}"
Useful for referencing members
of an array or table,
or for simulating a multi−dimensional array.
An indexing option would have been nice (sigh).

exit 0

Advanced Bash−Scripting HOWTO

3.30. Bash, version 2 135

Example 3−104. Using arrays and other miscellaneous trickery to deal four random hands from a deck
of cards

#!/bin/bash2
Must specify version 2 of bash, else might not work.

Cards:
deals four random hands from a deck of cards.

UNPICKED=0
PICKED=1

DUPE_CARD=99

LOWER_LIMIT=0
UPPER_LIMIT=51
CARDS_IN_SUITE=13
CARDS=52

declare −a Deck
declare −a Suites
declare −a Cards
It would have been easier and more intuitive
with a single, 3−dimensional array. Maybe
a future version of bash will support
multidimensional arrays.

initialize_Deck ()
{
i=$LOWER_LIMIT
until [$i −gt $UPPER_LIMIT]
do
 Deck[i]=$UNPICKED
 let "i += 1"
done
Set each card of "Deck" as unpicked.
echo
}

initialize_Suites ()
{
Suites[0]=C #Clubs
Suites[1]=D #Diamonds
Suites[2]=H #Hearts
Suites[3]=S #Spades
}

initialize_Cards ()
{
Cards=(2 3 4 5 6 7 8 9 10 J Q K A)
Alternate method of initializing array.
}

pick_a_card ()
{
card_number=$RANDOM
let "card_number %= $CARDS"
if [${Deck[card_number]} −eq $UNPICKED]
then
 Deck[card_number]=$PICKED

Advanced Bash−Scripting HOWTO

3.30. Bash, version 2 136

 return $card_number
else
 return $DUPE_CARD
fi
}

parse_card ()
{
number=$1
let "suite_number = number / CARDS_IN_SUITE"
suite=${Suites[suite_number]}
echo −n "$suite−"
let "card_no = number % CARDS_IN_SUITE"
Card=${Cards[card_no]}
printf %−4s $Card
Print cards in neat columns.
}

seed_random ()
{
Seed random number generator.
seed=`eval date +%s`
let "seed %= 32766"
RANDOM=$seed
}

deal_cards ()
{
echo

cards_picked=0
while [$cards_picked −le $UPPER_LIMIT]
do
 pick_a_card
 t=$?

 if [$t −ne $DUPE_CARD]
 then
 parse_card $t

 u=$cards_picked+1
 # Change back to 1−based indexing (temporarily).
 let "u %= $CARDS_IN_SUITE"
 if [$u −eq 0]
 then
 echo
 echo
 fi
 # Separate hands.

 let "cards_picked += 1"
 fi
done

echo

return 0
}

Structured programming:
entire program logic modularized in functions.

Advanced Bash−Scripting HOWTO

3.30. Bash, version 2 137

#================
seed_random
initialize_Deck
initialize_Suites
initialize_Cards
deal_cards

exit 0
#================

Exercise 1:
Add comments to thoroughly document this script.

Exercise 2:
Revise the script to print out each hand sorted in suites.
You may add other bells and whistles if you like.

Exercise 3:
Simplify and streamline the logic of the script.

Advanced Bash−Scripting HOWTO

3.30. Bash, version 2 138

Chapter 4. Credits
Philippe Martin translated this document into DocBook/SGML. While not on the job at a small French
company as a software developer, he enjoys working on GNU/Linux documentation and software, reading
literature, playing music, and for his peace of mind making merry with friends. You may run across him
somewhere in France or in the Basque Country, or email him at feloy@free.fr.

I would like to especially thank Patrick Callahan, Mike Novak, and Pal Domokos for catching bugs, pointing
out ambiguities, and for suggesting clarifications and changes. Their lively discussion of shell scripting and
general documentation issues inspired me to try to make this HOWTO more readable.

I'm grateful to Jim Van Zandt for pointing out errors and omissions in version 0.2 of this HOWTO. He also
contributed an instructive example script.

Many thanks to Jordi Sanfeliu mikaku@arrakis.es for giving permission to use his fine tree script (Example
A−8).

Emmanuel Rouat suggested corrections and additions on command substitution and aliases (see Section
3.12 and Section 3.20). He also contributed a very nice sample .bashrc file (Appendix C).

Florian Wisser enlightened me on some of the fine points of testing strings (see Example 3−13).

Others making helpful suggestions were Gabor Kiss and Leopold Toetsch.

My gratitude to Chet Ramey for writing Bash, an elegant and powerful scripting tool.

Thanks most of all to my wife, Anita, for her encouragement and emotional support.

Chapter 4. Credits 139

mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:mikaku@arrakis.es
mailto:chet@po.cwru.edu

Bibliography

Dale Dougherty and Arnold Robbins, Sed and Awk, 2nd edition, O'Reilly and Associates, 1997,
1−156592−225−5.

To unfold the full power of shell scripting, you need at least a passing familiarity with sed and awk. This is
the standard tutorial. It includes an excellent introduction to "regular expressions". Read this book.

*

Aeleen Frisch, Essential System Administration, 2nd edition, O'Reilly and Associates, 1995, 1−56592−127−5.

This excellent sys admin manual has a decent introduction to shell scripting for sys administrators and does a
nice job of explaining the startup and initialization scripts. The book is long overdue for a third edition (are
you listening, Tim O'Reilly?).

*

Stephen Kochan and Patrick Woods, Unix Shell Programming, Hayden, 1990, 067248448X.

The standard reference, though a bit dated by now.

*

Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, 2nd edition, O'Reilly and Associates, 1998,
1−56592−347−2.

This is a valiant effort at a decent shell primer, but somewhat deficient in coverage on programming topics
and lacking sufficient examples.

*

Anatole Olczak, Bourne Shell Quick Reference Guide, ASP, Inc., 1991, 093573922X.

A very handy pocket reference, despite lacking coverage of Bash−specific features.

*

Jerry Peek, Tim O'Reilly, and Mike Loukides, Unix Power Tools, 2nd edition, O'Reilly and Associates,
Random House, 1997, 1−56592−260−3.

Contains a couple of sections of very informative in−depth articles on shell programming, but falls short of
being a tutorial. It reproduces much of the regular expressions tutorial from the Dougherty and Robbins book,
above.

Bibliography 140

*

Arnold Robbins, Bash Reference Card, SSC, 1998, 1−58731−010−5.

Excellent Bash pocket reference (don't leave home without it). A bargain at $4.95, but also available for free
download on−line in pdf format.

*

Ellen Siever and and the Staff of O'Reilly and Associates, Linux in a Nutshell, 2nd edition, O'Reilly and
Associates, 1999, 1−56592−585−8.

The all−around best Linux command reference, even has a Bash section.

*

The UNIX CD Bookshelf, 2nd edition, O'Reilly and Associates, 2000, 1−56592−815−6.

An array of six UNIX books on CD ROM, including UNIX Power Tools, Sed and Awk, and Learning the
Korn Shell. A complete set of all the UNIX references and tutorials you would ever need at about $70. Buy
this one, even if it means going into debt and not paying the rent.

*

The O'Reilly books on Perl. (Actually, any O'Reilly books.)

The man pages for bash and bash2, date, expect, expr, find, grep, gzip, ln, patch, tar, tr, xargs. The
texinfo documentation on bash, dd, gawk, and sed.

The excellent "Bash Reference Manual", by Chet Ramey and Brian Fox, distributed as part of the
"bash−2−doc" package (available as an rpm). See especially the instructive example scripts in this package.

Ben Okopnik's well−written introductory Bash scripting articles in issues 53, 54, 55, 57, and 59 of the Linux
Gazette , and his explanation of "The Deep, Dark Secrets of Bash" in issue 56.

Chet Ramey's bash − The GNU Shell, a two−part series published in issues 3 and 4 of the Linux Journal,
July−August 1994.

Giles Orr's Bash−Prompt HOWTO.

Mike G's Bash−Programming−Intro HOWTO.

Advanced Bash−Scripting HOWTO

Bibliography 141

http://www.ssc.com/ssc/bash/
http://www.linuxgazette.com
http://www.linuxgazette.com
http://www.linuxjournal.com
http://www.linuxdoc.org/HOWTO/Bash-Prompt-HOWTO.html
http://www.linuxdoc.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Mark Komarinski's Printing−Usage HOWTO.

Trent Fisher's groff tutorial.

Chet Ramey's Bash F.A.Q.

The sed F.A.Q.

Carlos Duarte's instructive "Do It With Sed" tutorial.

The GNU gawk reference manual (gawk is the extended GNU version of awk available on Linux and BSD
systems).

There is some nice material on I/O redirection (Section 3.13) in chapter 10 of the textutils documentation at
the University of Alberta site.

Advanced Bash−Scripting HOWTO

Bibliography 142

http://www.linuxdoc.org/HOWTO/Printing-Usage-HOWTO.html
http://www.cs.pdx.edu/~trent/gnu/groff/groff.html
ftp://ftp.cwru.edu/pub/bash/FAQ
http://www.cornerstonemag.com/sed/sedfaq.html
http://www.dbnet.ece.ntua.gr/~george/sed/sedtut_1.html
http://www.dbnet.ece.ntua.gr/~george/sed/sedtut_1.html
http://sunsite.ualberta.ca/Documentation/Gnu/gawk-3.0.6/gawk.html
http://sunsite.ualberta.ca/Documentation/Gnu/textutils-2.0/html_chapter/textutils_10.html
http://sunsite.ualberta.ca/Documentation/Gnu/textutils-2.0/html_chapter/textutils_10.html
http://sunsite.ualberta.ca/Documentation
http://sunsite.ualberta.ca/Documentation
http://sunsite.ualberta.ca/Documentation

Appendix A. Contributed Scripts
These scripts, while not fitting into the text of this document, do illustrate some interesting shell
programming techniques. They are useful, too. Have fun analyzing and running them.

Example A−1. manview: A script for viewing formatted man pages

#!/bin/bash

Formats the source of a man page for viewing in a user directory.
This is useful when writing man page source and you want to
look at the intermediate results on the fly while working on it.

if [−z $1]
then
 echo "Usage: `basename $0` [filename]"
 exit 1
fi

groff −Tascii −man $1 | less
From the man page for groff.

exit 0

Example A−2. rn: A simple−minded file rename utility

This script is a modification of Example 3−58.

#! /bin/bash
#
Very simpleminded filename "rename" utility.
Based on "lowercase.sh".

if [$# −ne 2]
then
 echo "Usage: `basename $0` old−pattern new−pattern"
 # As in "rn gif jpg", which renames all gif files in working directory to jpg.
 exit 1
fi

number=0 # Keeps track of how many files actually renamed.

for filename in *$1* #Traverse all matching files in directory.
do
 if [−f $filename] # If finds match...
 then
 fname=`basename $filename` # Strip off path.
 n=`echo $fname | sed −e "s/$1/$2/"` # Substitute new for old in filename.
 mv $fname $n # Rename.
 let "number += 1"
 fi
done

if [$number −eq 1] # For correct grammar.

Appendix A. Contributed Scripts 143

then
 echo "$number file renamed."
else
 echo "$number files renamed."
fi

exit 0

Exercise for reader:
What type of files will this not work on?
How to fix this?

Example A−3. encryptedpw: A script for uploading to an ftp site, using a locally encrypted password

#!/bin/bash

Example 3−71 modified to use encrypted password.

if [−z $1]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

Username=bozo
Change to suit.

Filename=`basename $1`
Strips pathname out of file name

Server="XXX"
Directory="YYY"
Change above to actual server name & directory.

password=`cruft <pword`
"pword" is the file containing encrypted password.
Uses the author's own "cruft" file encryption package,
based on onetime pad algorithm,
and obtainable from:
Primary−site: ftp://metalab.unc.edu /pub/Linux/utils/file
cruft−0.2.tar.gz [16k]

ftp −n $Server <<End−Of−Session
−n option disables auto−logon

user $Username $Password
binary
bell
Ring 'bell' after each file transfer
cd $Directory
put $Filename
bye
End−Of−Session

exit 0

+

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 144

The following two scripts are by Mark Moraes of the University of Toronto. See the enclosed file
"Moraes−COPYRIGHT" for permissions and restrictions.

Example A−4. behead: A script for removing mail and news message headers

#! /bin/sh
Strips off the header from a mail/News message i.e. till the first
empty line
Mark Moraes, University of Toronto

−−> These comments added by author of HOWTO.

if [$# −eq 0]; then
−−> If no command line args present, then works on file redirected to stdin.
 sed −e '1,/^$/d' −e '/^[]*$/d'
 # −−> Delete empty lines and all lines until
 # −−> first one beginning with white space.
else
−−> If command line args present, then work on files named.
 for i do
 sed −e '1,/^$/d' −e '/^[]*$/d' $i
 # −−> Ditto, as above.
 done
fi

−−> Exercise for the reader: Add error checking and other options.
−−>
−−> Note that the small sed script repeats, except for the arg passed.
−−> Does it make sense to embed it in a function? Why or why not?

Example A−5. ftpget: A script for downloading files via ftp

#! /bin/sh
$Id: ftpget,v 1.2 91/05/07 21:15:43 moraes Exp $
Script to perform batch anonymous ftp. Essentially converts a list of
of command line arguments into input to ftp.
Simple, and quick − written as a companion to ftplist
−h specifies the remote host (default prep.ai.mit.edu)
−d specifies the remote directory to cd to − you can provide a sequence
of −d options − they will be cd'ed to in turn. If the paths are relative,
make sure you get the sequence right. Be careful with relative paths −
there are far too many symlinks nowadays.
(default is the ftp login directory)
−v turns on the verbose option of ftp, and shows all responses from the
ftp server.
−f remotefile[:localfile] gets the remote file into localfile
−m pattern does an mget with the specified pattern. Remember to quote
shell characters.
−c does a local cd to the specified directory
For example,
ftpget −h expo.lcs.mit.edu −d contrib −f xplaces.shar:xplaces.sh \
−d ../pub/R3/fixes −c ~/fixes −m 'fix*'
will get xplaces.shar from ~ftp/contrib on expo.lcs.mit.edu, and put it in
xplaces.sh in the current working directory, and get all fixes from
~ftp/pub/R3/fixes and put them in the ~/fixes directory.
Obviously, the sequence of the options is important, since the equivalent
commands are executed by ftp in corresponding order
#

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 145

Mark Moraes (moraes@csri.toronto.edu), Feb 1, 1989
−−> Angle brackets changed to parens, so Docbook won't get indigestion.
#

−−> These comments added by author of HOWTO.

PATH=/local/bin:/usr/ucb:/usr/bin:/bin
export PATH
−−> Above 2 lines from original script probably superfluous.

TMPFILE=/tmp/ftp.$$
−−> Creates temp file, using process id of script ($$)
−−> to construct filename.

SITE=`domainname`.toronto.edu
−−> 'domainname' similar to 'hostname'
−−> May rewrite this to parameterize this for general use.

usage="Usage: $0 [−h remotehost] [−d remotedirectory]... [−f remfile:localfile]... \
 [−c localdirectory] [−m filepattern] [−v]"
ftpflags="−i −n"
verbflag=
set −f # So we can use globbing in −m
set x `getopt vh:d:c:m:f: $*`
if [$? != 0]; then
 echo $usage
 exit 1
fi
shift
trap 'rm −f ${TMPFILE} ; exit' 0 1 2 3 15
echo "user anonymous ${USER−gnu}@${SITE} > ${TMPFILE}"
−−> Added quotes (recommended in complex echoes).
echo binary >> ${TMPFILE}
for i in $*
−−> Parse command line args.
do
 case $i in
 −v) verbflag=−v; echo hash >> ${TMPFILE}; shift;;
 −h) remhost=$2; shift 2;;
 −d) echo cd $2 >> ${TMPFILE};
 if [x${verbflag} != x]; then
 echo pwd >> ${TMPFILE};
 fi;
 shift 2;;
 −c) echo lcd $2 >> ${TMPFILE}; shift 2;;
 −m) echo mget "$2" >> ${TMPFILE}; shift 2;;
 −f) f1=`expr "$2" : "\([^:]*\).*"`; f2=`expr "$2" : "[^:]*:\(.*\)"`;
 echo get ${f1} ${f2} >> ${TMPFILE}; shift 2;;
 −−) shift; break;;
 esac
done
if [$# −ne 0]; then
 echo $usage
 exit 2
fi
if [x${verbflag} != x]; then
 ftpflags="${ftpflags} −v"
fi
if [x${remhost} = x]; then
 remhost=prep.ai.mit.edu
 # −−> Rewrite to match your favorite ftp site.

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 146

fi
echo quit >> ${TMPFILE}
−−> All commands saved in tempfile.

ftp ${ftpflags} ${remhost} < ${TMPFILE}
−−> Now, tempfile batch processed by ftp.

rm −f ${TMPFILE}
−−> Finally, tempfile deleted (you may wish to copy it to a logfile).

−−> Exercises for reader:
−−> 1) Add error checking.
−−> 2) Add bells & whistles.

+

Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution
operators discussed in Section 3.3.1.

Example A−6. password: A script for generating random 8−character passwords

#!/bin/bash
May need to be invoked with #!/bin/bash2 on some machines.
#
Random password generator for bash 2.x by Antek Sawicki <tenox@tenox.tc>,
who generously gave permission to the HOWTO author to use it here.
#
==> Comments added by HOWTO author ==>

MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
LENGTH="8"
==> May change 'LENGTH' for longer password, of course.

while [${n:=1} −le $LENGTH]
==> Recall that := is "default substitution" operator.
==> So, if 'n' has not been initialized, set it to 1.
do
 PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
 # ==> Very clever, but tricky.

 # ==> Starting from the innermost nesting...
 # ==> ${#MATRIX} returns length of array MATRIX.
 # ==> $RANDOM%${#MATRIX} returns random number between 1 and length of MATRIX.

 # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1}
 # ==> returns expansion of MATRIX at random position, by length 1.
 # ==> See {var:pos:len} parameter substitution in Section 3.3.1 and following examples.

 # ==> PASS=... simply pastes this result onto previous PASS (concatenation).

 # ==> To visualize this more clearly, uncomment the following line
 # ==> echo "$PASS"
 # ==> to see PASS being built up, one character at a time, each iteration of the loop.

 let n+=1
 # ==> Increment 'n' for next pass.

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 147

done

echo "$PASS"
#== Or, redirect to file, as desired.

+

James R. Van Zandt contributed this script, which uses named pipes and, in his words, "really exercises
quoting and escaping".

Example A−7. fifo: A script for making daily backups, using named pipes

#!/bin/bash
==> Script by James R. Van Zandt, and used here with his permission.

==> Comments added by author of HOWTO.

 HERE=`uname −n`
 # ==> hostname
 THERE=bilbo
 echo "starting remote backup to $THERE at `date +%r`"
 # ==> `date +%r` returns time in 12−hour format, i.e. "08:08:34 PM".

 # make sure /pipe really is a pipe and not a plain file
 rm −rf /pipe
 mkfifo /pipe
 # ==> Create a "named pipe", named "/pipe".

 # ==> 'su xyz' runs commands as user "xyz".
 # ==> 'ssh' invokes secure shell (remote login client).
 su xyz −c "ssh $THERE \"cat >/home/xyz/backup/${HERE}−daily.tar.gz\" < /pipe"&
 cd /
 tar −czf − bin boot dev etc home info lib man root sbin share usr var >/pipe
 # ==> Uses named pipe, /pipe, to communicate between processes:
 # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe.

 # ==> The end result is this backs up the main directories, from / on down.

 # ==> What are the advantages of a "named pipe" in this situation,
 # ==> as opposed to an "anonymous pipe", with |?
 # ==> Will an anonymous pipe even work here?

 exit 0

+

Jordi Sanfeliu gave permission to use his elegant tree script.

Example A−8. tree: A script for displaying a directory tree

#!/bin/sh
@(#) tree 1.1 30/11/95 by Jordi Sanfeliu
email: mikaku@arrakis.es
#

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 148

Initial version: 1.0 30/11/95
Next version : 1.1 24/02/97 Now, with symbolic links
Patch by : Ian Kjos, to support unsearchable dirs
email: beth13@mail.utexas.edu
#
Tree is a tool for view the directory tree (obvious :−))
#

==> 'Tree' script used here with the permission of its author, Jordi Sanfeliu.
==> Comments added by HOWTO author.

search () {
 for dir in `echo *`
 # ==> `echo *` lists all the files in current working directory, without line breaks.
 # ==> Same effect as for dir in *
 do
 if [−d $dir] ; then # ==> If it is a directory (−d)...
 zz=0 # ==> Temp variable, keeping track of directory level.
 while [$zz != $deep] # Keep track of inner nested loop.
 do
 echo −n "| " # ==> Display vertical connector symbol,
 # ==> with 2 spaces & no line feed in order to indent.
 zz=`expr $zz + 1` # ==> Increment zz.
 done
 if [−L $dir] ; then # ==> If directory is a symbolic link...
 echo "+−−−$dir" `ls −l $dir | sed 's/^.*'$dir' //'`
 # ==> Display horiz. connector and list directory name, but...
 # ==> delete date/time part of long listing.
 else
 echo "+−−−$dir" # ==> Display horizontal connector symbol...
 # ==> and print directory name.
 if cd $dir ; then # ==> If can move to subdirectory...
 deep=`expr $deep + 1` # ==> Increment depth.
 search # with recursivity ;−)
 # ==> Function calls itself.
 numdirs=`expr $numdirs + 1` # ==> Increment directory count.
 fi
 fi
 fi
 done
 cd .. # ==> Up one directory level.
 if [$deep] ; then # ==> If depth = 0 (returns TRUE)...
 swfi=1 # ==> set flag showing that search is done.
 fi
 deep=`expr $deep − 1` # ==> Decrement depth.
}

− Main −
if [$# = 0] ; then
 cd `pwd` # ==> No args to script, then use current working directory.
else
 cd $1 # ==> Otherwise, move to indicated directory.
fi
echo "Initial directory = `pwd`"
swfi=0 # ==> Search finished flag.
deep=0 # ==> Depth of listing.
numdirs=0
zz=0

while [$swfi != 1] # While flag not set...
do

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 149

 search # ==> Call function after initializing variables.
done
echo "Total directories = $numdirs"

==> Challenge to reader: try to figure out exactly how this script works.

Advanced Bash−Scripting HOWTO

Appendix A. Contributed Scripts 150

Appendix B. A Sed and Awk Micro−Primer
This is a very brief introduction to the sed and awk text processing utilities. We will deal with only a few
basic commands here, but that will suffice for understanding simple sed and awk constructs within shell
scripts.

sed: a non−interactive text file editor

awk: a field−oriented pattern processing language

For all their differences, the two utilities share a similar invocation syntax, both use regular expressions
(Section 3.15), both read input by default from stdin, and both output to stdout. These are well−behaved
UNIX tools, and they work together well. The output from one can be piped into the other, and their
combined capabilities give shell scripts some of the power of Perl.

Note: One important difference between the utilities is that while shell scripts can easily pass
arguments to sed, it is more complicated for awk (see Example 2−5).

B.1. Sed

Sed is a non−interactive line editor. It receives text input, whether from stdin or from a file, performs
certain operations on specified lines of the input, then outputs the result to stdout or to a file. Within a shell
script, sed is usually one of several tool components in a pipe.

Sed determines which lines of its input that it will operate on from the address range passed to it. Specify this
address range either by line number or by a pattern to match. For example, 3d signals sed to delete line 3 of
the input, and /windows/d tells sed that you want every line of the input containing a match to
"windows" deleted.

Of all the operations in the sed toolkit, we will focus primarily on the three most commonly used ones. These
are printing (to stdout), deletion, and substitution.

Table B−1. sed operators

Operator Name Effect

/address−range/p print Print (specified address range)

/address−range/d delete Delete (specified address range)

s/pattern1/pattern2/ substituteSubstitute pattern2 for pattern1

/address−range/y/pattern1/pattern2/ transformreplace pattern1 with pattern2 (works just
like tr)

g global Operate on every pattern match within each
matched line of input

Note: Unless the g (global) operator is appended to a substitute command, the substitution
operates only on the first instance of a pattern match within each line.

Appendix B. A Sed and Awk Micro−Primer 151

From the command line and in a shell script, a sed operation may require quoting and certain options.

sed −e '/^$/d'
The −e option causes the next string to be interpreted as an instruction.
The "strong" quotes ('') protect the special characters in the instruction
from reinterpretation as regular expressions by the body of the script.
(This reserves RE expansion of the instruction for sed.)

Note: Both sed and awk use the −e option to specify that the following string is an
instruction or set of instructions. If there is only a single instruction contained within the
string, then the option may be omitted.

sed −n '/xzy/p'
The −n option tells sed to print only those lines matching the pattern.
Otherwise all input lines would print.

Table B−2. examples

Notation Effect

8d Delete 8th line of input.

/^$/d Delete all blank lines.

1,/^$/d Delete from beginning of input up to, and including first blank line.

/Jones/p Print only lines containing "Jones" (with −n option).

s/Windows/Linux/ Substitute "Linux" for first instance of"Windows" found in each input line.

s/BSOD/stability/g Substitute "stability" for every instance of"BSOD" found in each input line.

/GUI/d Delete all lines containing "GUI".

s/GUI//g Delete all instances of "GUI", leaving the remainder of each line intact.

Note: Substituting a zero−length string for another is equivalent to deleting that string within
a line of input. This leaves the remainder of the line intact. Applying s/GUI// to the line
The most important parts of any application are its GUI and
sound effects results in

The most important parts of any application are its and sound effects

.

For illustrative examples of sed within shell scripts, see:

Example 2−31.
Example 2−42.
Example 3−473.
Example A−24.
Example 3−555.
Example 3−606.
Example A−47.
Example A−88.

Advanced Bash−Scripting HOWTO

Appendix B. A Sed and Awk Micro−Primer 152

Example 3−659.

For a more extensive treatment of sed, check the appropriate references in the Bibliography.

B.2. Awk

Awk is a full−featured text processing language with a syntax reminiscent of C. While it possesses an
extensive set of operators and capabilities, we will cover only a couple of these here − the ones most useful
for shell scripting.

Awk breaks each line of input passed to it into fields. By default, a field is a string of consecutive characters
separated by white space, though there are options for changing the delimiter. Awk parses and operates on
each separate field. This makes awk ideal for handling structured text files, especially tables, data organized
into consistent chunks, such as rows and columns.

Strong quoting (single quotes) and curly brackets enclose segments of awk code within a shell script.

awk '{print $3}'
Prints field #3 to stdout.

awk '{print $1 $5 $6}'
Prints fields #1, #5, and #6.

We have just seen the awk print command in action. The only other feature of awk we need to deal with here
is variables. Awk handles variables similarly to shell scripts, though a bit more flexibly.

{ total += ${column_number} }

This adds the value of column_number to the running total of "total". Finally, to print "total", there needs to
be an END command to terminate the processing.

END { print total }

Corresponding to the END, there is a BEGIN, for a code block to be performed before awk starts processing
its input.

For examples of awk within shell scripts, see:

Example 3−511.
Example 3−752.
Example 3−653.
Example 2−54.

That's all the awk we'll cover here folks, but there's lots more to learn. See the appropriate references in the
Bibliography.

Advanced Bash−Scripting HOWTO

B.2. Awk 153

Appendix C. A Sample .bashrc File
The ~/.bashrc file determines the behavior of the shell, and of shell scripts. A proper understanding of
this file can lead to more effective use of scripts.

Emmanuel Rouat contributed the following very elaborate .bashrc file. He wrote it for a Solaris system,
but it (mostly) works for other flavors of UNIX as well. Study this file carefully, and feel free to reuse code
snippets and functions from it in your own .bashrc file and even in your scripts.

Example C−1. Sample .bashrc file

#===
#
PERSONAL $HOME/.bashrc FILE for bash−2.04 (or later)
by Emmanuel Rouat
#
This file is read (normally) by interactive shells only.
Here is the place to define your aliases, functions and
other interactive features like your prompt.

This file was designed for Solaris
#
#===

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Source global definitions (if any)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

if [−f /etc/bashrc]; then
 . /etc/bashrc # Read system bash init file, if exists.
fi

#−−−
Automatic setting of $DISPLAY (if not set already)
This works for linux and solaris − your mileage may vary....
#−−−

if [−z ${DISPLAY:=""}]; then
 DISPLAY=$(who am i)
 DISPLAY=${DISPLAY%%\!*}
 if [−n "$DISPLAY"]; then
 export DISPLAY=$DISPLAY:0.0
 else
 export DISPLAY=":0.0" # fallback
 fi
fi

#−−−−−−−−−−−−−−−
Some settings
#−−−−−−−−−−−−−−−

set −o notify

Appendix C. A Sample .bashrc File 154

set −o noclobber
set −o ignoreeof
set −o nounset
#set −o xtrace # useful for debuging

shopt −s cdspell
shopt −s cdable_vars
shopt −s checkhash
shopt −s checkwinsize
shopt −s mailwarn
shopt −s sourcepath
shopt −s no_empty_cmd_completion
shopt −s histappend histreedit
shopt −s extglob # useful for programmable completion

#−−−−−−−−−−−−−−−−−−−−−−−
Greeting, motd etc...
#−−−−−−−−−−−−−−−−−−−−−−−

Define some colors first:
red='\e[0;31m'
RED='\e[1;31m'
blue='\e[0;34m'
BLUE='\e[1;34m'
cyan='\e[0;36m'
CYAN='\e[1;36m'
NC='\e[0m' # No Color

Looks best on a black background.....
echo −e "${CYAN}This is BASH ${RED}${BASH_VERSION%.*}${CYAN} − DISPLAY on ${RED}$DISPLAY${NC}\n"
date

function _exit() # function to run upon exit of shell
{
 echo −e "${RED}Hasta la vista, baby${NC}"
}
trap _exit 0

#−−−−−−−−−−−−−−−
Shell prompt
#−−−−−−−−−−−−−−−

function fastprompt()
{
 unset PROMPT_COMMAND
 case $TERM in
 xterm | rxvt | dtterm)
 PS1="[\h] \W > \[\033]0;[\u@\h] \w\007\]" ;;
 *)
 PS1="[\h] \W > " ;;
 esac
}

function powerprompt()
{
 _powerprompt()
 {

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 155

 LOAD=$(uptime|sed −e "s/.*: \([^,]*\).*/\1/" −e "s/ //g")
 TIME=$(date +%H:%M)
 }

 PROMPT_COMMAND=_powerprompt
 case $TERM in
 xterm | dtterm | rxvt)
 PS1="${cyan}[\$TIME \$LOAD]$NC\n[\h \#] \W > \[\033]0;[\u@\h] \w\007\]" ;;
 linux)
 PS1="${cyan}[\$TIME − \$LOAD]$NC\n[\h \#] \w > " ;;
 *)
 PS1="[\$TIME − \$LOAD]\n[\h \#] \w > " ;;
 esac
}

powerprompt # this is the default prompt − might be slow
 # If too slow, use fastprompt instead....

#===
#
ALIASES AND FUNCTIONS
#
Arguably, some functions defined here are quite big
(ie 'lowercase') but my workstation has 512Meg of RAM, so
If you want to make this file smaller, these functions can
be converted into scripts.
#
#===

#−−−−−−−−−−−−−−−−−−−
Personnal Aliases
#−−−−−−−−−−−−−−−−−−−

alias rm='rm −i'
alias cp='cp −i'
alias mv='mv −i'
alias h='history'
alias j='jobs −l'
alias r='rlogin'
alias which='type −a'
alias ..='cd ..'
alias path='echo −e ${PATH//:/\\n}'
alias print='/usr/bin/lp −o nobanner −d $LPDEST'

alias la='ls −Al'
alias lr='ls −lR'
alias lt='ls −ltr'
alias lm='ls −al |more'

spelling typos

alias xs='cd'
alias vf='cd'
alias moer='more'
alias moew='more'
alias kk='ll'

#−−−
Environment dependent aliases/variables

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 156

#−−−

if [−d $FREE/bin] ; then # use gnu/free stuff
Condition test unnecessary on a Linux or BSD system.

 alias vi='vim'
 alias csh='tcsh'
 alias du='du −h'
 alias df='df −kh'
 alias ls='ls −hF −−color'
 alias lx='ls −lXB'
 alias lk='ls −lSr'
 alias pjet='enscript −h −G −fCourier9 −d $LPDEST '
 alias background='xv −root −quit −max −rmode 5'

 alias more='less'
 export PAGER=less
 export LESSCHARSET='latin1'
 export LESSOPEN='|lesspipe.sh %s'
 export LESS='−i −e −M −X −F −R −P%t?f%f \
:stdin .?pb%pb\%:?lbLine %lb:?bbByte %bb:−...'

else # use regular solaris stuff

 alias df='df −k'
 alias ls='ls −F'

fi

#−−−−−−−−−−−−−−−−
a few fun ones
#−−−−−−−−−−−−−−−−

function xtitle ()
{
 case $TERM in
 xterm* | dtterm | rxvt)
 echo −n −e "\033]0;$*\007" ;;
 *) ;;
 esac
}

alias top='xtitle Processes on $HOST && top'
alias make='xtitle Making $(basename $PWD) ; make'
alias ncftp="xtitle ncFTP ; ncftp"

#−−−−−−−−−−−−−−−
and functions
#−−−−−−−−−−−−−−−

function man ()
{
 xtitle The $(basename $1|tr −d .[:digit:]) manual
 /usr/bin/man −a "$*"
}

#−−−
Environment dependent functions
#−−−

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 157

Note: we mustn't mix these with alias definitions in the same 'if/fi'
construct because alias expansion wouldn't occur in some functions here,
like 'll' that uses ls (which is an alias).

if [−d $FREE/bin] ; then # use gnu/free stuff

 function ll(){ ls −l $*| egrep "^d" ; ls −lh $* 2>&−| egrep −v "^d|total "; }
 function xemacs() { { command xemacs −private $* 2>&− & } && disown ;}
 function te() # wrapper around xemacs/gnuserv
 {
 if ["$(gnuclient −batch −eval t 2>&−)" == "t"]; then
 gnuclient −q $@;
 else
 (xemacs $@ &);
 fi
 }

else # use solaris stuff

 function ll(){ ls −l $* |egrep "^d"; ls −l $* 2>&− |egrep −v "^d|total" ;}
 function lk() { \ls −lF $* | egrep −v "^d|^total" | sort −n −k 5,5 ;}
 function te() { (dtpad "$@" &) ;}

fi

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
File & strings related functions:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function ff() { find . −name '*'$1'*' ; }
function fe() { find . −name '*'$1'*' −exec $2 {} \; ; }
function fstr() # find a string in a set of files
{
 if ["$#" −gt 2]; then
 echo "Usage: fstr \"pattern\" [files] "
 return;
 fi
 find . −type f −name "${2:−*}" −print | xargs grep −n "$1"
}
function cuttail() # cut last n lines in file
{
 nlines=$1
 sed −n −e :a −e "1,${nlines}!{P;N;D;};N;ba" $2
}

function lowercase() # move filenames to lowercase
{
 for file ; do
 filename=${file##*/}
 case "$filename" in
 /) dirname==${file%/*} ;;
 *) dirname=.;;
 esac
 nf=$(echo $filename | tr A−Z a−z)
 newname="${dirname}/${nf}"
 if ["$nf" != "$filename"]; then
 mv "$file" "$newname"
 echo "lowercase: $file −−> $newname"
 else

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 158

 echo "lowercase: $file not changed."
 fi
 done
}

function swap() # swap 2 filenames around
{
 local TMPFILE=tmp.$$
 mv $1 $TMPFILE
 mv $2 $1
 mv $TMPFILE $2
}

Process/system related functions:

alias my_ps='/usr/bin/ps −u "$USER" −o user,pid,ppid,pcpu,pmem,args'
function pp() { my_ps | nawk '!/nawk/ && $0~pat' pat=${1:−".*"} ; }
function killps() # Kill process by name
{ # works with gawk too
 local pid pname sig="−TERM" # default signal
 if ["$#" −lt 1] || ["$#" −gt 2]; then
 echo "Usage: killps [−SIGNAL] pattern"
 return;
 fi
 if [$# = 2]; then sig=$1 ; fi
 for pid in $(my_ps | nawk '!/nawk/ && $0~pat { print $2 }' pat=${!#}) ; do
 pname=$(my_ps | nawk '$2~var { print $6 }' var=$pid)
 if ask "Kill process $pid <$pname> with signal $sig ? "
 then kill $sig $pid
 fi
 done
}

function ii() # get current host related info
{
 echo −e "\nYou are logged on ${RED}$HOST"
 echo −e "\nAdditionnal information:$NC " ; uname −a
 echo −e "\n${RED}IP Address :$NC" ; ypmatch $HOSTNAME hosts
 echo −e "\n${RED}Users logged on:$NC " ; /usr/ucb/users
 echo −e "\n${RED}Current date :$NC " ; date
 echo −e "\n${RED}Machine stats :$NC " ; uptime
 echo −e "\n${RED}Memory stats :$NC " ; vmstat
 echo −e "\n${RED}NIS Server :$NC " ; ypwhich
 echo
}
function corename() # get name of app that created core
{
 local file name;
 file=${1:−"core"}
 set −− $(adb $file < /dev/null 2>&1 | sed 1q)
 name=${7#??}
 echo $file: ${name%??}
}
Misc utilities:

function repeat() # repeat n times command
{
 local i max
 max=$1; shift;
 for ((i=1; i <= max ; i++)); do
 eval "$@";

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 159

 done
}

function ask()
{
 echo −n "$@" '[y/n] ' ; read ans
 case "$ans" in
 y*|Y*) return 0 ;;
 *) return 1 ;;
 esac
}

#===
#
PROGRAMMABLE COMPLETION − ONLY IN BASH−2.04
#
#===

if ["${BASH_VERSION%.*}" \< "2.04"]; then
 echo "No programmable completion available"
 return
fi

shopt −s extglob # necessary

complete −A hostname rsh rcp telnet rlogin r ftp ping disk
complete −A command nohup exec eval trace truss strace sotruss gdb
complete −A command command type which
complete −A export printenv
complete −A variable export local readonly unset
complete −A enabled builtin
complete −A alias alias unalias
complete −A function function
complete −A user su mail finger

complete −A helptopic help # currently same as builtins
complete −A shopt shopt
complete −A stopped −P '%' bg
complete −A job −P '%' fg jobs disown

complete −A directory mkdir rmdir

complete −f −X '*.gz' gzip
complete −f −X '!*.ps' gs ghostview gv
complete −f −X '!*.pdf' acroread
complete −f −X '!*.+(gif|jpg|jpeg|GIF|JPG|bmp)' xv gimp

_make_targets ()
{
 local mdef makef gcmd cur prev i

 COMPREPLY=()
 cur=${COMP_WORDS[COMP_CWORD]}
 prev=${COMP_WORDS[COMP_CWORD−1]}

 # if prev argument is −f, return possible filename completions.
 # we could be a little smarter here and return matches against
 # `makefile Makefile *.mk', whatever exists

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 160

 case "$prev" in
 −*f) COMPREPLY=($(compgen −f $cur)); return 0;;
 esac

 # if we want an option, return the possible posix options
 case "$cur" in
 −) COMPREPLY=(−e −f −i −k −n −p −q −r −S −s −t); return 0;;
 esac

 # make reads `makefile' before `Makefile'
 if [−f makefile]; then
 mdef=makefile
 elif [−f Makefile]; then
 mdef=Makefile
 else
 mdef=*.mk # local convention
 fi

 # before we scan for targets, see if a makefile name was specified
 # with −f
 for ((i=0; i < ${#COMP_WORDS[@]}; i++)); do
 if [[${COMP_WORDS[i]} == −*f]]; then
 eval makef=${COMP_WORDS[i+1]} # eval for tilde expansion
 break
 fi
 done

 [−z "$makef"] && makef=$mdef

 # if we have a partial word to complete, restrict completions to
 # matches of that word
 if [−n "$2"]; then gcmd='grep "^$2"' ; else gcmd=cat ; fi

 # if we don't want to use *.mk, we can take out the cat and use
 # test −f $makef and input redirection
 COMPREPLY=($(cat $makef 2>/dev/null | awk 'BEGIN {FS=":"} /^[^.#][^=]*:/ {print $1}' | tr −s ' ' '\012' | sort −u | eval $gcmd))
}

complete −F _make_targets −X '+($*|*.[cho])' make gmake pmake

_configure_func ()
{
 case "$2" in
 −*) ;;
 *) return ;;
 esac

 case "$1" in
 \~*) eval cmd=$1 ;;
 *) cmd="$1" ;;
 esac

 COMPREPLY=($("$cmd" −−help | awk '{if ($1 ~ /−−.*/) print $1}' | grep ^"$2" | sort −u))
}

complete −F _configure_func configure

_killps ()
{
 local cur prev
 COMPREPLY=()

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 161

 cur=${COMP_WORDS[COMP_CWORD]}

 # get a list of processes (the first sed evaluation
 # takes care of swapped out processes, the second
 # takes care of getting the basename of the process)
 COMPREPLY=($(/usr/bin/ps −u $USER −o comm | \
 sed −e '1,1d' −e 's#[]\[]##g' −e 's#^.*/##'| \
 awk '{if ($0 ~ /^'$cur'/) print $0}'))

 return 0
}
complete −F _killps killps

Local Variables:
mode:shell−script
sh−shell:bash
End:

Advanced Bash−Scripting HOWTO

Appendix C. A Sample .bashrc File 162

Appendix D. Copyright
The "Advanced Bash−Scripting HOWTO" is copyright, (c) 2000, by Mendel Cooper. This document may
only be distributed subject to the terms and conditions set forth in the LDP License These are very liberal
terms, and they should not hinder any legitimate distribution or use of this HOWTO. The author especially
encourages the use of this HOWTO, or portions thereof, for instructional purposes.

A Korean translation of this HOWTO is in process. If you wish to translate it into another language, please
feel free to do so, subject to the terms stated above. The author would appreciate being notified of such
efforts.

If this document is incorporated into a printed book, the author requests a courtesy copy. This is a request, not
a requirement.

Notes

[1]
Many of the features of ksh88, not the newer ksh93 have been merged into Bash.

[2]
The words "argument" and "parameter" are often used interchangeably. In the context of this document,
they have the same precise meaning, that of a variable passed to a script or function.

[3]
A flag is an argument that acts as a signal, switching script behaviors on or off.

[4]
The print queue is the group of jobs "waiting in line" to be printed.

[5]
NAND is the logical "not−and" operator. Its effect is somewhat similar to subtraction.

[6]
A file descriptor is simply a number that the operating system assigns to an open file to keep track of it.
Consider it a simplified version of a file pointer. It is analogous to a file handle in C.

[7]
Using file descriptor 5 might cause problems. When Bash forks a child process, as with exec,
the child inherits fd 5 (see Chet Ramey's archived e−mail, SUBJECT: RE: File descriptor 5 is held
open). Best leave this particular fd alone.

Appendix D. Copyright 163

http://www.linuxdoc.org/manifesto.html
http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/
http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/
http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/
http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/

	Table of Contents
	Chapter 1. Why Shell Programming?
	Chapter 2. Starting Off With a Sha-Bang
	2.1. Invoking the script
	2.2. Shell wrapper, self-executing script

	Chapter 3. Tutorial / Reference
	3.1. exit and exit status
	3.2. Special characters used in shell scripts
	3.3. Introduction to Variables and Parameters
	3.3.1. Parameter Substitution
	3.4. Quoting
	3.5. Tests
	3.5.1. File test operators
	3.5.2. Comparison operators (binary)
	3.6. Operations and Related Topics
	3.6.1. Operations
	3.6.2. Numerical Constants
	3.7. Variables Revisited
	3.7.1. Typing variables: declare or typeset
	3.7.2. Indirect References to Variables
	3.7.3. $RANDOM: generate random integer
	3.8. Loops
	3.9. Internal Commands and Builtins
	3.9.1. Job Control Commands
	3.10. External Filters, Programs and Commands
	3.10.1. Basic Commands
	3.10.2. Complex Commands
	3.10.3. Time / Date Commands
	3.10.4. Text Processing Commands
	3.10.5. File and Archiving Commands
	3.10.6. Communications Commands
	3.10.7. Miscellaneous Commands
	3.11. System and Administrative Commands
	3.12. Backticks (`COMMAND`)
	3.13. I/O Redirection
	3.14. Recess Time
	3.15. Regular Expressions
	3.15.1. A Brief Introduction to Regular Expressions
	3.15.2. Using REs in scripts
	3.16. Subshells
	3.17. Restricted Shells
	3.18. Process Substitution
	3.19. Functions
	3.20. Aliases
	3.21. List Constructs
	3.22. Arrays
	3.23. Files
	3.24. Here Documents
	3.25. Of Zeros and Nulls
	3.26. Debugging
	3.27. Options
	3.28. Gotchas
	3.29. Miscellany
	3.29.1. Interactive and non-interactive scripts
	3.29.2. Optimizations
	3.29.3. Assorted Tips
	3.30. Bash, version 2

	Chapter 4. Credits
	Bibliography
	Appendix A. Contributed Scripts
	Appendix B. A Sed and Awk Micro-Primer
	B.1. Sed
	B.2. Awk
	Notes

	Appendix C. A Sample .bashrc File
	Appendix D. Copyright

